Skip navigation



Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFirpo, Sergio-
dc.contributor.authorPinto, Rafael de Carvalho Cayres-
dc.date.accessioned2017-01-03T12:58:34Z-
dc.date.accessioned2018-03-19T17:57:04Z-
dc.date.available2017-01-03T12:58:34Z-
dc.date.available2018-03-19T17:57:04Z-
dc.date.issued2012-05-
dc.identifier.citationFIRPO, Sergio; PINTO, Rafael de Carvalho Cayres. Combining strategies for the estimation of treatment effects. Brazilian Review of Econometrics, Rio de Janeiro, v. 32, n. 1, p. 31-71, maio 2012.pt_BR
dc.identifier.urihttp://web.bndes.gov.br/bib/jspui/handle/1408/10614-
dc.descriptionBibliografia: p. 68-71.pt_BR
dc.description.abstractThe estimation of the average effect of a program or treatment on a variable of interest is an important tool for the assessment of economic policies. In general, assignment of potential participants to treatment does not occur at random and could thus generate a selection bias in absence of some correction. A way to get around this problem is by assuming that the econometrician observes a set of determinant characteristics of participation up to a strictly random component. Under such an assumption, the literature contains semiparametric estimators of the average treatment effect that are consistente and can asymptotically reach the semiparametric effciency bound. However, in frequently available samples, the performance of these methods is not always satisfactory. The aim of this paper is to investigate how the combination of two strategies may generate estimators with better properties in small samples. Therefore, we consider two ways of combining these approaches, based on the double robustness literature developed by James Robins et al. We analyze the properties of these combined estimators and discuss why they can outperform the separate use of each method. Finally, using a Monte Carlo simulation, we compare the performance of these estimators with that of the imputation and reweighting techniques. Our results show that the combination of strategies can reduce bias and variance, but this improvement depends on adequate implementation. We conclude that the choice of smoothing parameters is decisive for the performance of estimators in medium-sized samples.pt_BR
dc.format.extentp. 31-71pt_BR
dc.language.isoenpt_BR
dc.publisherSociedade Brasileira de Econometriapt_BR
dc.subjectModelos econométricospt_BR
dc.subjectEconometric modelspt_BR
dc.subjectMonte Carlo, Método dept_BR
dc.subjectMonte Carlo methodpt_BR
dc.subjectAnálise de regressãopt_BR
dc.subjectRegression analysispt_BR
dc.titleCombining strategies for the estimation of treatment effectspt_BR
dc.typeArtigopt_BR
dc.nobrade.niveldescricao5pt_BR
dc.generoTextualpt_BR
dc.comunidadeProdução BNDESpt_BR
dc.localRio de Janeiropt_BR
Aparece en las colecciones: Produção BNDES - Artigos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Combining strategies for the estimation of treatment effects_Rafael Cayres_P_BD.pdf431.47 kBAdobe PDFVisualizar/Abrir Descargar
Mostrar el registro sencillo del ítem


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.