Skip navigation



Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorTorroni, Paolo-
dc.contributor.advisorAlmeida, Vanessa da Rocha Santos-
dc.date.accessioned2023-12-08T15:20:37Z-
dc.date.available2023-12-08T15:20:37Z-
dc.date.issued2021-
dc.identifier.citationRUBERG, Nicolaas. BERT goes sustainable : an NLP approach to ESG financing. Bologna, 2021. 57 f. Dissertação (Mestrado) - Università di Bologna, Department of Computer Science and Engineering, Bologna, 2021en_US
dc.identifier.urihttp://web.bndes.gov.br/bib/jspui/handle/1408/23905-
dc.descriptionInclui bibliografia: p. 54-57 e notas de rodapéen_US
dc.description.abstractEnvironmental, Social, and Governance (ESG) factors are a strategic topic for investors and financing institutions like the Brazilian Development Bank (BNDES). Currently, the Brazilian bank’s experts are developing a framework based on those factors to assess companies' sustainable financing. In this work, we identify an opportunity to use Natural Language Processing (NLP) in this development. This opportunity arises from the observation that a critical document to the ESG analysis is the company annual activity report. This document undergoes a manual screening, and later it is decomposed, and its parts are redirected to specialists’ analysis. Therefore, the screening process would largely benefit from NLP to automate the classification of text excerpts from the annual report. The proposed automation solution is based on different Bidirectional Encoder Representations from Transformers (BERT) architectures, which rely on the attention mechanism to achieve optimal results on sentence-level analysis tasks. We devised a text classification task to enable the analysis of excerpts from the annual activity report of companies considering three categories, according to the ESG reference standard, the Global Reporting Initiative (GRI). We produced the training and validation sets from Brazilian companies’ annual reports from the GRI database to validate our experiments. To establish a benchmark, we implemented a baseline solution using a classic NLP approach, Naïve Bayes, which got a 51% accuracy and 50,33% F1-score. RoBERTa and BERT-large achieved 88% accuracy and almost 85% F1- score, the best results obtained from our experiments with different BERT architectures. Also, Albert showed to be a possible alternative for limited memory devices, with 85% accuracy and 78.5924% F1-score. Finally, we experimented with a multilingual setup that would be interesting for a scenario where the BNDES wants a more generic model that can analyze English or Portuguese annual reports. Bert multilingual model reached almost 86% accuracy and 81.18% F1-score. The proposed methodology to the GRI text classification and the BERT model selection for the ESG analysis of annual activity reports are significant contributions presented in this dissertation, aiming to improve the BNDES ESG framework substantially.en_US
dc.format.extent57 p.en_US
dc.language.isoenen_US
dc.subjectBanco Nacional de Desenvolvimento Econômico e Social (Brasil) - Financiamentoen_US
dc.subjectBrazilian Development Bank - Financingen_US
dc.subjectGlobal Reporting Initiativeen_US
dc.subjectLingüística - Processamento de dadosen_US
dc.subjectComputational linguisticsen_US
dc.subjectResponsabilidade social da empresaen_US
dc.subjectSocial responsibility of businessen_US
dc.subjectGovernança corporativaen_US
dc.subjectCorporate governanceen_US
dc.subjectDesenvolvimento sustentávelen_US
dc.subjectSustainable developmenten_US
dc.subjectAutomaçãoen_US
dc.subjectAutomationen_US
dc.subjectProcessamento de linguagem natural (Computação)-
dc.subjectNatural language processing (Computer science)-
dc.titleBERT goes sustainable : an NLP approach to ESG financingen_US
dc.typeTeseen_US
dc.generoTextualen_US
dc.comunidadeBNDES em Focoen_US
dc.localBolonhaen_US
dc.contributor.authorbndesRuberg, Nicolaas-
Aparece nas coleções:BNDES em Foco - Teses e Dissertações

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
FCTese216014BERT goes sustainable_a.pdf1.9 MBAdobe PDFVisualizar/AbrirSalvar
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando indicado o contrário.