MERCADO BRASILEIRO DE LITOPÔNIO

ASPECTOS GERAIS DOS PIGMENTOS BRANCOS

Existe uma numerosa classe de produtos químicos inorgânicos denominados vulgarmente "pigmentos brancos", os quais têm uma ampla gama de aplicações em vários setores industriais.

Não obstante seu grande número, poucos são os que têm importância comercial, do ponto de vista do volume utilizado na indústria, cabendo destacar como mais importantes os seguintes, na ordem decrescente do valor da produção atual no mundo:

- 1 Dióxido de Titânio
 - a) tipo rutilo
 - b) tipo anatase
- 2 Óxido de Zinco
- 3 Litopônio
- 4 Alvaiade de Chumbo

Estes quatro produtos respondem atualmente por mais de 90% (1) do consumo mundial de todos os pigmentos brancos, sendo que o dióxido de titânio é, de longe, o mais importante dêles, pois participa com mais de 50% do suprimento total.

Embora os pigmentos brancos normalmente apresentem características próprias, de um modo geral valem as seguintes generalizações:

- a) O principal setor industrial consumidor é o de tintas, para onde vão cêrca de 2/3 da atual produção mundial;
- Substituem-se mùtuamente numa larga faixa de aplicações, dependendo a concorrência efetiva entre os mesmos, na sua maior parte, dos seguintes fatôres: preço, poder de cobertura, estabilidade química e atoxidez.

Sôbre os pigmentos aqui especificados cabem as seguintes considerações de ordem geral:

Alvaiade: Único pigmento branco conhecido na antigüidade — e que, por isto mesmo, teve largo emprêgo no passado — vem sendo paulatinamente substituído por outros produtos — inicialmente pelo óxido de zinco e, posteriormente, pelo litopônio e o dióxido de titânio — substituição essa que se intensificou a partir da Primeira Guerra Mundial.

Tal substituição se prende notadamente aos seguintes fatôres, comuns ao alvaiade:

- a) preço elevado (relativamente a seu poder de cobertura);
- b) elevada toxidez;
- c) pouca resistência à ação de fumaças, gases sulfurosos, etc.

Em contrapartida, é um produto extremamente resistente à ação da luz, o que faz com que seja usado, de preferência, onde a resistência à luminosidade seja um requisito primordial do pigmento.

Óxido de Zinco: Seu uso industrial data do século passado. Inicialmente serviu co-

Incluindo-se, naturalmente, nesta parcela, os produtos decorrentes de simples combinações entre êsses mesmos pigmentos, o que é muito comum na indústria moderna.

mo substituto parcial do alvaiade de chumbo, principalmente nos produtos sujeitos a manipulação intensa, devido a sua atoxidez, em contraposição a êste último, altamente tóxico.

Embora tenha poder de cobertura melhor que o do alvaiade e seu preço tenda a ser menor, sua durabilidade é inferior à dos demais pigmentos, o que faz do óxido de zinco um fraco concorrente, na função de pigmento branco. Atualmente seu principal consumidor é o setor de borracha, onde êle atua com a função de acelerador de vulcanização.

Litopônio: É um bom pigmento, possuindo alto poder de cobertura, baixo preço e total atoxidez. Quanto à durabilidade e estabilidade química, é bastante afetado pela luz intensa, notadamente com o decorrer do tempo, o que o torna mais indicado à preparação de tintas para interiores. Foi por algum tempo o principal pigmento branco de uso industrial (nas décadas de 30 e 40), tendo, porém, perdido esta posição para o dióxido de titânio, muito embora em alguns países ainda se conserve como o pigmento de uso mais intenso.

De um modo geral, o litopônio é um produto bastante próximo do dióxido de titânio quanto às principais propriedades, se bem que lhe seja ligeiramente inferior e, por isso mesmo, concorre com aquêle produto numa faixa muito ampla de aplicação (talvez em mais de 90% dos usos possíveis os dois produtos se substituam tècnicamente sem maiores conseqüências), dependendo a concorrência efetiva principalmente da estrutura dos seus preços na região considerada, relativamente a seus respectivos podêres de cobertura.

Dióxido de Titânio: Apresenta-se sob duas formas: rutilo e anatase, e é o melhor pigmento branco de quantos se conhece na atualidade. Além de ser atóxico e barato, possui excelente poder de cobertura e boa estabilidade química, qualidades essas que são notáveis na variedade rutilo.

Não obstante sua introdução relativamente recente na indústria (década dos 20), seu uso se intensificou ràpidamente, respondendo atualmente por mais de 50% do suprimento mundial de pigmentos brancos industriais. Esta percentagem elevada, entretanto, encontra-se fortemente influen-

ciada pela estrutura da demanda dos Estados Unidos, o maior consumidor mundial de pigmentos, onde o dióxido participa com uma percentagem superior à média mundial. Todavia, quando se considera a situação de cada país isoladamente, verifica-se haver alguns onde o litopônio ainda tem uma participação superior ao dióxido no suprimento, muito embora a tendência geral indique que no futuro êste último venha a dominar inteiramente o mercado mundial.

EVOLUÇÃO DO CONSUMO DOS PRIN-CIPAIS PIGMENTOS BRANCOS NOS ESTADOS UNIDOS

O Quadro I mostra a participação dos principais pigmentos brancos no consumo americano em alguns anos do período 1920-1964, evidenciando as modificações verificadas na participação de cada um com o correr do tempo.

É óbvio que não se pretende, com êsse exemplo, inferir conclusões definitivas para os demais países, pois a participação de produtos concorrentes no consumo de um país é função de múltiplas variáveis, notadamente de sua estrutura industrial, do nível de renda "per capita" e da constelação de fatôres necessários à produção de cada bem.

O que se pretende com o exemplo em tela é tão sòmente ressaltar as possibilidades técnicas de substituição dos diversos pigmentos brancos entre si, e a apresentação dos EUA como modêlo se deve apenas ao fato daquele país dispor de uma grande massa de informações estatísticas, fàcilmente compulsáveis.

No Quadro II apresentam-se os pigmentos antes mencionados e seus respectivos podêres teóricos de cobertura, bem como suas cotações no mercado americano em 1964, último ano para o qual se conseguiram dados comparativos. A última coluna mostra os preços relativos de cada tipo de pigmento citado, referidos a "unidades ideais de poder de cobertura", tomando-se o litopô-

QUADRO I

EUA – CONSUMO DOS PRINCIPAIS PIGMENTOS BRANCOS, EM ANOS ESCOLHIDOS DO PERÍODO 1920/1964

(1000 t)

Anos	Alvaiade (1)	Óxido de Zinca (2)	Litopônio	Dióxido de Titânio	
1920	150		81	1	
1940	82		140	100	
1951	72	134	93	290	
1961	29	132	18 (3)	445	
1964	26	158	15 (4)	476	

Fonte: BNDE/DEE. (1) Alvaiade de chumbo e de chumbo e zinco; (2) Consumo total de ZnO. Sua utilização como "pigmento branco" tem regulado em tôrno de 40/50% do consumo total; (3) 1960; (4) Estimativa.

QUADRO II

EUA — RELAÇÕES ENTRE "PREÇOS POR UNIDADE DE PODER DE COBERTURA" DOS PRINCIPAIS PIGMENTOS BRANCOS, TOMANDO-SE O LITOPÔNIO COMO BASE COMPARATIVA, 1964

Pigmento	Pode cober		Preços 1964		Índice	
rigmento	m²/kg	Índice	US\$/t	Índice	preço/poder de cobertura	
. Dióxido de Titânio 1.1 Rutilo	33,5	600	600	325	0,54	
1.2 Anatase 2. Litopônio	23,0 5,5	400 100	550 185	297 100	0,74 1,00	
3. Óxido de Zinco 4. Alvaiade (de Chumbo)	4,1 3,1	75 55	310 400	167 216	2,22 3,92	

Fonte: BNDE/DEE.

nio para base de comparação (preço e poder de cobertura do litopônio = 100).

A análise dos números da coluna em questão sugere as seguintes conclusões:

- a) a relação entre preços e poder de cobertura é, nos EUA, francamente favorável ao dióxido de titânio, comparativamente com os outros pigmentos, o que por si só explicaria sua elevada participação no consumo total de
- pigmentos brancos nesse país, independentemente do fato de êsse produto apresentar características técnicas superiores aos demais;
- b) a utilização dos vários pigmentos brancos não depende apenas das razões entre seus preços e respectivos podêres de cobertura, pois se assim fôsse, não teria sentido que se continuasse a utilizar ali outros pigmen-

tos que não o dióxido. Isto provàvelmente se explica pelo fato de que, em determinadas aplicações, certos pigmentos apresentem melhores "performances", em decorrência de suas propriedades específicas, o que faz com que sua substituição se torne desaconselhável, dando como resultado que sempre haverá alguma participação dos diferentes pigmentos no suprimento de cada país, independentemente das relações de preços vigorantes.

O Quadro III, finalmente, mostra a estrutura do consumo norte-americano, segundo os setores finais de utilização, ao longo do período 1953-1964, ressaltando a nítida predominância do ramo de tintas na demanda final (exceção feita para o óxido de zinco).

Parece desnecessário frisar que não se pretende também aqui extrapolar conclusões definitivas sôbre a estrutura de consumo final dos demais países com base no que se verifica nos Estados Unidos. Todavia, neste caso, o paralelismo na estrutura de demanda final dos diversos países deve ser bem mais estreita, notadamente naqueles que já tenham atingido um grau razoável de desenvolvimento industrial e desde que se considerem os pigmentos em sua totalidade.

Por outras palavras, muito embora a participação percentual de cada pigmento branco no seu consumo total deva divergir bastante de um país para outro, no que se refere à setorialização do consumo final, não deve haver grandes divergências de um país para outro. Em consequência, pode-se concluir que o setor de tintas em geral responde por um mínimo de 60% do consumo final de pigmentos brancos em qualquer país que já tenha alcançado um estágio razoável de industrialização. Como ramos de importância secundária deverão seguir-se os de papel, cerâmica, borracha (pigmentação), plásticos, etc., todos êles com pequena participação individual.

QUADRO III

EUA – CONSUMO DOS PRINCIPAIS PIGMENTOS BRANCOS, SEGUNDO OS SETORES INDUSTRIAIS, EM ANOS ESCOLHIDOS DO PERÍODO 1953-1964

(percentagens)

Pigmentos e setores finais	1953/57	Anos			
consumidores (1)	(2)	1959	1962	1964	
I — Alvaiade (de zinco e chumbo)					
Tintas em geral	90,3	85,6	85,0	81,4	
Outros setores	9,7	14,4	15,0	18,6	
II — Óxido de Zinco		20.2	-10	E1 0	
Borracha	52,2	51,9	51,8	51,2	
Tintas em geral	21,2	21,8	20,3	22,7	
Cerâmica	6,1	6,8	7,2	6,8 19,3	
Outros	20,5	19,5	20,7	19,5	
III — Dióxido de Titânio		00.5	co c	64,3	
Tintas em geral	66,7	66,5	63,6	12,4	
Papel	10,2	11,7	13,0		
Revestimento de piso e soalho	4,4	4,9	4,3	3,9	
Borracha	3,4	4,2	4,2	3,1	
Outros	15,3	12,7	14,9	16,3	

Fonte: Minerals Yearbook, coleção 1962/65. (1) Não há informações disponíveis sôbre consumo de litopônio nos EUA nos últimos anos, pelo fato de apenas uma emprêsa o produzir no país, o que possibilitaria "identificação" de informações no caso de publicação. (2) Média

MERCADO BRASILEIRO

Evolução do Consumo de Pigmentos Brancos

Conforme assinalado, o litopônio e o dióxido de titânio são produtos com propriedades bastante próximas, o que faz com que se substituam mútuamente numa faixa muito ampla de aplicações. Embora não se disponha de informações concretas que permitam calcular a amplitude real dessa faixa, especialmente no caso brasileiro, é permitido, não obstante, assegurar que ela abrange mais de 90% das utilizações possíveis dos dois produtos, com alguma desvantagem para o litopônio, que pode ser substituído em maior grau pelo dióxido do que inversamente. Quanto aos demais pigmentos brancos, também concorrem com os dois acima especificados, mas em escala pouco significativa, sendo que as indicações existentes com referência ao Brasil indicam que já se deu aqui a substituição do alvaiade e do óxido de zinco (na função de pigmento branco) por litopônio e TiO₂, na medida em que isto é tècnicamente possível.

Esta afirmação encontra apoio também na estrutura do consumo do maior fabricante de tintas do País, onde a utilização de pigmentos brancos se deu na seguinte proporção no período 1962-1965:

Especificação	1962		1963		1964		1965	
	t	%	t	%	t	%	t	%
Litopônio Dióxido de Titânio Óxido de Zinco	2.357 594 405	70,0 18,0 12,0	1.804 665 372	64,0 23,0 13,0	1.843 801 338	62,0 27,0 11,0	1.476 734 328	59,0 29,0 12,0
Total	3.356	100,0	2.841	100,0	2.982	100,0	2.538	100,0

Assim sendo, nas considerações que se farão a seguir sôbre a evolução possível do consumo de litopônio no Brasil durante os próximos anos, não se levará em conta a possibilidade de sua substituição por óxido de zinco e alvaiade, mas tão-sòmente por dióxido, tendo em vista principalmente os seguintes fatos:

Quanto ao Óxido Zinco: Sua principal utilização é no setor de borracha, onde é usado como acelerador de vulcanização. Embora não se disponha de números exatos, as informações disponíveis permitem concluir que o setor em tela responde por mais de 60% do consumo interno de óxido de zinco, sendo de notar ainda que o produto possui várias outras aplicações não concorrentes com os pigmentos brancos, tais como base para cosméticos, cimento odontológico, fabricação de tecidos sintéticos,

etc. Considerando, por outro lado, que sua relação "preço/poder de cobertura" é muitas vêzes superior à do litopônio e do dióxido, parece perfeitamente válido admitir-se que apresente fraco poder de concorrência com êsses dois produtos. Seja como fôr, as indicações existentes são de que o consumo interno de óxido de zinco na função de pigmento branco não vai além de 2.000 toneladas/ano atualmente, limite êsse que, pelas razões expendidas acima, não deverá sofrer modificações substanciais nos próximos anos, carecendo, assim, de maiores considerações, face seu pequeno significado no suprimento total de pigmentos brancos.

Quanto ao Alvaiade: Também não se dispõe de informações reais sôbre o seu consumo no País durante os últimos anos. Sabe-se, todavia, que sua produção interna é de pequena significação, enquanto que as importações no último quinquênio têmse mantido inferiores a 500 toneladas/ano, em média. Dada sua elevada toxidez, como composto de chumbo — e seu fraco poder de cobertura — o alvaiade tende a manterse como produto de pequeno significado no suprimento de pigmentos brancos ao setor industrial, permanecendo sua utiliza-

ção apenas para a fabricação de tintas especiais e outros casos de menor monta.

LITOPÔNIO E DIÓXIDO DE TITÂNIO

O Quadro IV reproduz o consumo de litopônio e dióxido de titânio no País ao

QUADRO IV

BRASIL – EVOLUÇÃO DO CONSUMO DE LITOPÔNIO E
DIÓXIDO DE TITÂNIO, 1954-66

	Cor	Consumo Aparente (t)			Consumo semi-ajustado p/médias trienais móve				
Anos	Lito-	Dióxido	Total C=A+B	Litopônio		Dióxio Titá	Total		
	pônio A	В		† (D)	% (E)	t (F)	% (G)	H=D+F	
1954	6.270	4.000	10.270	_	_			_	
1955	5.800	3.070	8.870	6.657	64,5	3.667	35,5	10.324	
1956	7.900	3.930	11.830	7.187	67,2	3.510	32,8	10.697	
1957	7.860	3.530	11.390	7.333	65,6	3.843	34,4	11.176	
1958	6.240	4.070	10.310	7.247	64,1	4.063	35,9	11.310	
1959	7.640	4.590	12.230	7.160	60,8	4.617	39,2	11.777	
1960	7.600	5.190	12.790	8.310	61,5	5.213	38,5	13.523	
1961	9.690	5.860	15.550	9.023	59,6	6.110	40,4	15.133	
1962	9.780	7.280	17.060	9.100	55,5	7.293	44,5	16.393	
1963	7.830	8.740	16.570	8.067	49,8	8.130	50,2	16.197	
1964	6.590	8.370(1)	14.960	6.833	44,6	8.490	55,4	15.323	
1965	6.080	8.360(1)	14.440	6.423	41,0	9.243	59,0	15.666	
1966 (2)	6.600	11.000(1)	17.600			_	-	7 -11-	

Fonte: BNDE/DEE.

(1) Na hipótese de que a CII tenha usado plenamente sua capacidade (1.800 t).

(2) Estimativa com base na média mensal janeiro/junho.

longo do período 1954-1966, ressaltando do seu exame:

a) O consumo de litopônio evoluiu nesse intervalo de modo extremamente lento, mantendo-se, a bem dizer, estagnado, fato que se evidencia claramente quando se examina a coluna D, onde a curva de consumo aparece semi-ajustada por médias trienais móveis, calculadas com o objetivo de minimizar as oscilações provocadas pelas manipulações de estoques.

 O consumo de dióxido de titânio, por sua vez, cresceu a uma taxa média notàvelmente elevada, absorvendo pràticamente todo o acréscimo de consumo interno de pigmentos nesse interregno. A coluna F do quadro mostra o consumo aparente de dióxido, ajustado também por médias trienais móveis, a fim de tornar mais perceptível o seu rápido crescimento. A coluna C do mesmo quadro resulta do somatório das duas que lhe antecedem, enquanto que as colunas E e G mostram a evolução da participação percentual de cada pigmento no consumo total. Vê-se, por aí, que a participação do litopônio no consumo chegou a atingir a elevada percenta-

gem de 67,2% no triênio 1955-57 ao passo que foi de sòmente 41,0% nos últimos 3 anos, o que bem mostra a alta velocidade com que se vem dando sua substituição (cêrca de 4,5% ao ano).

A substituição evidenciada era de esperar, tendo em vista que no caso do TiO₂

e do litopônio a concorrência está muito ligada às razões entre seus preços e respectivos podêres de cobertura. No Brasil essa relação vem últimamente se tornando francamente favorável ao dióxido, conforme mostra o Quadro V, em que pese a incidência tarifária sôbre o mesmo ser de 40%, ao passo que é de apenas 20% para o litopônio (2).

QUADRO V

BRASIL – COMPARAÇÃO ENTRE OS PREÇOS RELATIVOS DE DIÓXIDO DE TITÂNIO E LITOPÔNIO, AO LONGO DO PERÍODO 1958-1966, EM TÊRMOS DE "UNIDADES DE PODER DE COBERTURA"

Anos	Preços CIF em US\$/t			consumidor JS\$/t	% do preço do dióxido d titânio relativamente a		
	Litopônio	Dióxido de Titânio	Litopônio (2)	Dióxido de Titânio (3)	litopônio, em têrmos d unidades de poder de cobertura (4) E = 100 — %		
	A	В	€ = 1,35A	D == 1,55B	4,5 C		
1958	134	542	181	840	103,0		
1961	131	510	177	791	99,2		
1963	146	494	197	766	86,3		
1965	157	478	212	741	77,6		
1966(1)	160	480	216	744	76.5		

Fonte: BNDE/DEE. Dados SEEF, do Ministério da Fazenda.

Notas: (1) 1.º semestre; (2) 20% de tarifa aduaneira, mais 15% de outras despesas; (3) 40% de tarifa aduaneira, mais 15% de outras despesas; (4) na hipótese de que a relação entre poder de cobertura do litopônio e do dióxido de titânio seja de 1 para 4,5 (o que implica em admitir-se que aproximadamente 25% do consumo interno se refere a rutilo e 75% a anatase).

Admite se que essa relação favorável ao dióxido prossiga e que, com o decorrer do tempo, se acentue, hipótese que se fundamenta nos seguintes fatos:

- A tendência dos preços de dióxido de titânio no mercado mundial tem sido francamente descendente, havendo fortes indícios de que ainda continuará por algum tempo neste sentido, pois, por um lado, sua produção vemse beneficiando de inovações tecnológicas que têm possibilitado a redução
- de custos e, por outro lado, sua área de produção vem-se expandindo constantemente, acarretando maior elasticidade da demanda final.
- ii) Fenômeno inverso nota-se com relação ao litopônio que, a par de uma produção em regressão no contexto mundial, vem tendo seus preços de oferta cada vez mais altos, em têrmos médios.
- iii) Deve-se ter presente, ainda, que a perspectiva de produção de dióxido no País, em escala substancial, a iniciar-se nos próximos 3 a 4 anos, deverá melhorar consideràvelmente as

⁽²⁾ Para os países da ALALC a tarifa sôbre o litopônio é zero (0), a partir de 1966.

condições de sua oferta interna, com relação ao litopônio, que embora também deva ser produzido internamente, o será em escala bem menor.

A rigor, a substituição de litopônio por dióxido de titânio deveria vir ocorrendo a uma velocidade maior do que aquela efetivamente observada até aqui, considerando-se a favorabilidade na relação entre precos e poder de cobertura dos dois produtos, verificada ùltimamente no País. Tal retardamento talvez possa ser atribuído a um elevado coeficiente de viscosidade, originário de uma "cristalização de hábitos" dos consumidores. É o caso, por exemplo, das pequenas e médias emprêsas que depois de conseguirem aperfeiçoar uma certa técnica de produção, para elaborarem determinados produtos com um tipo especial de matéria-prima, oferecem sérias resistências à introdução de matérias-primas substitutas, recorrendo a inovações sòmente quando as vantagens daí decorrentes sejam inequívocas e claramente visíveis, de modo a não deixar dúvidas quanto à sua oportunidade. Essa "cristalização de hábitos" tende a manter elevado o "coeficiente de viscosidade", retardando a substituição de uma matériaprima por outra. Há fortes indícios de que isso vem se verificando no caso do litopônio e do dióxido no Brasil.

Tal fato contribui, sem dúvida, para retardar a substituição do litopônio pelo dióxido, em que pese as vantagens dêste último.

CONSUMO SETORIAL

Não se dispõe de informações sôbre o consumo setorial de litopônio no Brasil. Todavia, tendo em vista a similitude de características do mesmo com o dióxido, pode-se admitir que o consumo dos dois produtos se distribua de forma bastante próxima, quanto aos setores finais de aplicação.

Aceita esta hipótese como válida, o consumo brasileiro de litopônio apresentaria distribuição semelhante à do Quadro VI, que se refere ao consumo de dióxido de titânio no Brasil em 1957, segundo as informações disponíveis.

QUADRO VI

BRASIL – COMPOSIÇÃO PROVÁVEL, POR SETOR, DO CONSUMO APARENTE DO DIÓXIDO DE TITÂNIO, SEGUNDO OS SETORES FINAIS DE UTILIZAÇÃO, 1957

Setores Consumidores	%
Tintas, vernizes e lacas Plásticos Borracha Papel Metalurgia e esmaltação a fogo	54,0 2,9 4,7 1,5 4,2 32,7
Outros Total	100,0

Fonte: BNDE/DEE — Mercado Brasileiro de Dióxido de Titânio — 1964.

No quadro acima o setor de "tintas, vernizes e lacas" aparece com apenas 54,0% do consumo, o que representa uma certa distorção (para menos) em relação ao esperado, com base na experiência de outros países onde êste setor costuma absorver entre 60 e 70% do consumo de dióxido. To-

davia, deve-se ter presente que o item "Outros", com participação muito elevada (33%), não significa obrigatòriamente outros setores distintos dos especificados no quadro, mas, simplesmente, que não foi possível, em face da limitação de informações, enquadrar devidamente tôdas as re-

messas de dióxido, segundo a destinação final. É quase certo que êsse item englobe diversos consumidores de tintas, os quais teriam sido identificades se os dados informativos fôssem mais perfeitos.

Projeções do Consumo

Pelo visto anteriormente, conclui-se que seria incorreto considerar a evolução do consumo nacional de litopônio nos próximos anos sem levar em conta a concorrência que o mesmo pode sofrer de outros pigmentos. Todavia, face ao que se disse com referência ao alvaiade e ao óxido de zinco nos parágrafos acima, considerar se-á únicamente o dióxido como substituto possível do litopônio, dependendo a velocidade de substituição dos fatôres que venham a condicionar os preços relativos de oferta dos dois produtos no mercado interno.

Nas projeções para o consumo de litopônio no País, durante os próximos anos, admitiu-se inicialmente que o mesmo se desenvolveria segundo a tendência histórica observada ao longo do período 1954-66. Tendo em vista a curva do consumo aparente observada nesse intervalo e a natureza tipicamente cumulativa do fenômeno, adotou-se, então, a hipótese de que o consumo evoluísse no futuro segundo uma exponencial simples, do tipo genérico Y = AB*. Ajustou-se, em decorrência, uma curva desta forma aos dados da coluna D do Quadro IV, obtendo-se como resultado a seguinte equação: $Y' = 7.500 (1,006)^{x}$, que serviu de base para o cálculo dos dados da coluna 1 do Quadro VII. A taxa de crescimento anual assim encontrada (0,6%) mostra o fato já anteriormente ressaltado, sôbre a quase estagnação do consumo de litopônio no período de 1954-66.

Feito isto e com o objetivo de testar a compatibilidade desta hipótese, projetouse também o consumo de dióxido e a série do consumo conjunto de dióxido de lito-

pônio (colunas F e H do Quadro IV), mediante os mesmos critérios empregados para o litopônio. Os resultados encontram-se respectivamente nas colunas 2 e 4 do Quadro VII. Comparando-se a coluna 4 dêsse quadro (projeção do consumo conjunto de dióxido e litopônio) com os dados da coluna 3 (somatório das projeções dos consumos parciais dos mesmos produtos) verificam-se grandes discrepâncias, que tendem a acentuar-se com o correr do tempo, chegando-se mesmo a uma impossibilidade lógica a partir de 1976, quando o consumo isolado de dióxido superaria o consumo conjunto de litopônio e dióxido (coluna 4).

Dêste fato conclui-se pela impropriedade dos pressupostos adotados, ou seja, que os consumos parciais de litopônio e dióxido poderiam sustentar no futuro, isoladamente, suas taxas individuais de crescimeno observadas no período 1954-1966.

Realmente, uma observação menos superficial da série de consumo de litopônio no País nos últimos 3 anos mostra uma tendência regressiva, o que não se evidencia a um exame menos atento pelo fato de consumo de "pigmentos brancos" ter caído também nesse período, como decorrência da involução observada na taxa de desenvolvimento da economia nacional a partir de 1963, particularmente do setor industrial, relativamente ao período 1954-1961.

Há fortes indícios, porém, de que o consumo de litopônio já passou por um máximo — não só em têrmos relativos, fato claramente evidenciado, mas também em têrmos absolutos — e que dificilmente voltará a atingir níveis observados no biênio 1961-1962, de quase 10.000 t/ano. Quanto ao consumo de dióxido, não parece provável que o mesmo consiga manter por mui to tempo mais a taxa média de crescimento observada no intervalo 1954-1966, de cêrca de 11,5% ao ano, e que, a longo prazo, essa taxa tenderá a aproximar-se do ritmo de crescimento que se vem observando pa-

ra o consumo conjunto de litopônio e dióxido, da ordem de 5,5% ao ano.

Em vista do exposto resolveu-se adotar outro processo para estimar a demanda brasileira de litopônio no futuro, o qual consistiu no seguinte:

- a) admitiu-se como válida a projeção encontrada com base no ajustamento do consumo conjunto de litopônio e dióxido (coluna 4 do Quadro VII). Justifica-se essa hipótese com o argumento de que, no seu conjunto, o consumo de pigmentos brancos não deverá sofrer modificações significativas relativamente à taxa verificada no passado, visto que não há substitutos para os mesmos, quando tomados no seu todo. O pressuposto complementar, necessário e implícito nessa hipótese, é o de que a economia reassuma também o ritmo de crescimento observado no período 1954-1961, notadamente no que se refere ao setor indústria:
- b) estabeleceu-se que a substituição de litopônio por dióxido continuaria nes próximos anos, seguindo a mesma tendência observada no período 1954-66.

Esta hipótese mostra-se, por outro lado, coerente, ao indicar que a velocidade de substituição sofre um movimento de desaceleração, o que está de acôrdo com a experiência observada em países mais desenvolvidos, onde êsse processo de substituição encontra-se mais avançado.

Com base nesses pressupostos projetouse o consumo de litopônio para os próximos anos, chegando se aos resultados da coluna 6 do Quadro VII. A curva obtida, se admite venha a representar, com mais probabilidade, a evolução do consumo nacional de litopônio no decorrer do período 1966-1975. Observa-se que a tendência é ligeiramente decrescente e que o total do consumo previsto para o decênio considerado é de aproximadamente 66 mil t, o que dá uma demanda média de 6,6 mil topeladas anuais

A coluna 8 do quadro mostra a estimativa de evolução do consumo provável de dióxido de titânio no mesmo período, segundo êsse critério. Tais números, não obstante determinados por metodologia inteiramente diversa, conformam-se com os encontrados através de estudos elaborados no BNDE, ao analisar projeto específico.

QUADRO VII L – CONSUMO AJUSTADO E PROJETADO DE LITOPÔNIO

BRASIL – CONSUMO AJUSTADO E PROJETADO DE LITOPÔNIO E DIÓXIDO DE TITÂNIO, 1955/1975

	Hip	oótese Rejeitada	(1)		Hij	pótese Adotada (II)	
		. At Bifuit de	e Total (I)	Total	Lito	pônio	Dióxido de Titânio	
Anos	Litopônio (†)	Dióxido de Titânio (t) 2	3=(1+2)	(11)	% sôbre o total (II) 5	(t) 6=(4)×(5)÷100	% sôbre o total (II) 7	(†) 8=(4)(6
							-	
1955	7.280	3.200	10.480	10.190	65,0	6.620	35,0	3.570
1956	7.320	3.570	10.890	10.740	64,9	6.970	35,1	3.770
1957	7.370	3.970	11.340	11.320	64,8	7.340	35,2	3.980
1958	7.410	4.430	11.840	11.930	63,9	7.620	36,1	4.310
1959	7.460	4.930	12.390	12.570	62,2	7.820	37,8	4.750
1960	7.500	5.490	12.990	13.250	59,9	7.940	40,1	5.310
1961	7.550	6.120	13.670	13.960	57,0	7.960	43,0	6.000
1962	7.590	6.820	14.410	14.720	53,8	7.920	46,2	6.800
1963	7.640	7.590	15.230	15.520	50,5	7.840	49,5	7.680
1964	7.680	8.460	16.140	16.350	47,1	7.700	52,9	8.650
1965	7.730	9.430	17.160	17.240	43,8	7.550	56,2 59,3	9.690
1966	7.770	10.500	18.270	18.170	40,7	7.400	59,3	10.770
1967	7.820	11.700	19.520	19.150	37,6	7.200	62,4 65,2	11.950
1968	7.870	13.030	20.900	20.180	34,8	7.020	65,2	13.160
1969	7.920	14.520	22.440	21.270	32,1	6.830	67,9	14.440
1970	7.960	16.170	24.130	22,420	29,7	6.660	70,3	15.760
1971	8.010	18.020	26.030	23.630	27,3	6.450	72,7	17.180
1972	8.060	20.070	28.130	24.910	25,2	6.280	74,8	18.630
1973	8.110	22.360	30.470	26.250	23,3	6.120	76,7	20.130
1974	8.150	24.900	33.050	27.670	21,5	5.950	78,5	21.720
1975	8.200	27.740	35.940	29.160	19,8	5.770	80,2	23.390
1976	8.250	30.900	39.150	30.730				

Fonte: BNDE/DEE.