3049

A ARMADILHA DO PARADOXO DE TOSTINES: FINANCIAMENTOS DO BNDES POR PORTE DE EMPRESAS E SEU POTENCIAL NA TRANSFORMAÇÃO ESTRUTURAL DAS MICRORREGIÕES DO BRASIL

FELIPE ORSOLIN TEIXEIRA MAURO ODDO NOGUEIRA

3049Brasília, outubro de 2024

A ARMADILHA DO PARADOXO DE TOSTINES: FINANCIAMENTOS DO BNDES POR PORTE DE EMPRESAS E SEU POTENCIAL NA TRANSFORMAÇÃO ESTRUTURAL DAS MICRORREGIÕES DO BRASIL

FELIPE ORSOLIN TEIXEIRA¹
MAURO ODDO NOGUEIRA²

^{1.} Professor adjunto do Departamento de Economia da Universidade Federal do Paraná (UFPR) e pesquisador bolsista do Subprograma de Pesquisa para o Desenvolvimento Nacional (PNPD) na Diretoria de Estudos e Políticas Setoriais, de Inovação, Regulação e Infraestrutura do Instituto de Pesquisa Econômica Aplicada (Diset/Ipea). *E-mail*: felipeorsolin@ufpr.br.

^{2.} Técnico de planejamento e pesquisa e coordenador da Coordenação de Estudos sobre Cadeias Produtivas e Micro e Pequenas Empresas (Cocam) na Diset/Ipea. *E-mail*: mauro.nogueira@ipea.gov.br.

Governo Federal

Ministério do Planejamento e Orçamento Ministra Simone Nassar Tebet

ipea Instituto de Pesquisa Econômica Aplicada

Fundação pública vinculada ao Ministério do Planejamento e Orçamento, o Ipea fornece suporte técnico e institucional às ações governamentais – possibilitando a formulação de inúmeras políticas públicas e programas de desenvolvimento brasileiros – e disponibiliza, para a sociedade, pesquisas e estudos realizados por seus técnicos.

Presidenta

LUCIANA MENDES SANTOS SERVO

Diretor de Desenvolvimento Institucional FERNANDO GAIGER SILVEIRA

Diretora de Estudos e Políticas do Estado, das Instituições e da Democracia LUSENI MARIA CORDEIRO DE AQUINO

Diretor de Estudos e Políticas Macroeconômicas CLÁUDIO ROBERTO AMITRANO

Diretor de Estudos e Políticas Regionais, Urbanas e Ambientais ARISTIDES MONTEIRO NETO

Diretora de Estudos e Políticas Setoriais, de Inovação, Regulação e Infraestrutura FERNANDA DE NEGRI

Diretor de Estudos e Políticas Sociais CARLOS HENRIQUE LEITE CORSEUIL

Diretor de Estudos Internacionais FÁBIO VÉRAS SOARES

Chefe de Gabinete
ALEXANDRE DOS SANTOS CUNHA

Coordenadora-Geral de Imprensa e Comunicação Social GISELE AMARAL

Ouvidoria: http://www.ipea.gov.br/ouvidoria URL: http://www.ipea.gov.br

Texto para Discussão

Publicação seriada que divulga resultados de estudos e pesquisas em desenvolvimento pelo Ipea com o objetivo de fomentar o debate e oferecer subsídios à formulação e avaliação de políticas públicas.

© Instituto de Pesquisa Econômica Aplicada - ipea 2024

Teixeira, Felipe Orsolin

A Armadilha do paradoxo de tostines : financiamentos do BN-DES por porte de empresas e seu potencial na transformação estrutural das microrregiões do Brasil / Felipe Orsolin Teixeira, Mauro Oddo Nogueira. – Brasília, DF: Ipea, 2024.

62 p.: il., gráfs., mapas. - (Texto para Discussão; n. 3049).

Inclui Bibliografia. ISSN 1415-4765

1. BNDES. 2. Porte de Empresas. 3. Microrregiões. 4. Complexidade Econômica. I. Nogueira, Mauro Oddo. II. Instituto de Pesquisa Econômica Aplicada. III. Título.

CDD 332.3

Ficha catalográfica elaborada por Elizabeth Ferreira da Silva CRB-7/6844.

Como citar:

TEIXEIRA, Felipe Orsolin; NOGUEIRA, Mauro Oddo. **A Armadilha do paradoxo de tostines**: financiamentos do BNDES por porte de empresas e seu potencial na transformação estrutural das microrregiões do Brasil. Brasília, DF: Ipea, out. 2024. 62 p. : il. (Texto para Discussão, n. 3049). DOI: http://dx.doi.org/10.38116/td3049-port

JEL: L6; O4; R1.

DOI: http://dx.doi.org/10.38116/td3049-port

As publicações do Ipea estão disponíveis para download gratuito nos formatos PDF (todas) e ePUB (livros e periódicos).

Acesse: http://www.ipea.gov.br/portal/publicacoes

As opiniões emitidas nesta publicação são de exclusiva e inteira responsabilidade dos autores, não exprimindo, necessariamente, o ponto de vista do Instituto de Pesquisa Econômica Aplicada ou do Ministério do Planejamento e Orçamento.

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte. Reproduções para fins comerciais são proibidas.

SUMÁRIO

SINOPSE

ABSTRACT

1	INTRODUÇÃO	6
2	METODOLOGIA	9
	2.1 Fonte e base de dados	9
	2.2 Abordagem linear da complexidade econômica	10
	2.3 Abordagem não linear da complexidade econômica	11
	2.4 Produtividade associada à cesta de exportações (EXPY)	12
	2.5 Conceitos básicos de análise espacial	13
	2.6 Modelo econométrico espacial	14
3	RESULTADOS	.16
	3.1 Análise exploratória de dados espaciais	16
	3.2 Modelo econométrico espacial	33
4	CONSIDERAÇÕES FINAIS	.39
R	EFERÊNCIAS	41
۸	DÊNDICE A	16

SINOPSE

O objetivo geral deste trabalho foi verificar se existe uma relação espacial entre os recursos do Banco Nacional do Desenvolvimento Econômico e Social (BNDES) – por porte de empresas – e a transformação estrutural das microrregiões do Brasil. Como proxy de transformação estrutural, foram utilizados índices de complexidade econômica (linear e não linear) e de produtividade no comércio exterior. O período utilizado foi de 2009 a 2020. Os dados indicaram que a maior parte dos recursos do BNDES para a indústria de transformação é destinada para as regiões Sul e Sudeste e, principalmente, para microrregiões que abrigam os grandes centros comerciais. Também se observou um padrão baixo-baixo (baixa intensidade de financiamento e baixa complexidade) para as microrregiões da parte central do país. Por outro lado, os resultados econométricos mostraram a existência de efeitos de transbordamento espacial do financiamento do BNDES para microempresas na transformação estrutural das microrregiões do país.

Palavras-chave: BNDES; porte de empresas; microrregiões; complexidade econômica.

ABSTRACT

The study aimed to investigate the potential spatial correlation between BNDES funding allocation across different company sizes and the structural transformation of micro-regions in Brazil. Economic complexity indices, both linear and non-linear, along with productivity in foreign trade, were utilized as proxies for measuring structural transformation in this context. The period used was from 2009 to 2020. The data indicated that the majority of BNDES resources for the manufacturing industry are destined for the South and Southeast regions and, mainly, for micro-regions that are home to large commercial centers. A low-low pattern (low financing intensity and low complexity) was also observed for the microregions in the central part of the country. On the other hand, the econometric results showed the existence of spatial spillover effects of BNDES financing for microenterprises in the structural transformation of the country's microregions.

Keywords: BNDES; company size; microregions; economic complexity.

1 INTRODUÇÃO

O Brasil vem enfrentando sucessivos ciclos de crise econômica que remontam a 2014 e cujos efeitos se refletem na dinâmica social do país, com aumento no índice de Gini e aumento na taxa de desocupação e de subutilização da força de trabalho (IBGE, 2023). Em conjunto com a crise sanitária ocasionada pela pandemia da covid-19, foi necessário um maior esforço orçamentário para atender às necessidades básicas da população, tal como um aumento nos auxílios emergências (IBGE, 2023), e isso acaba por restringir o orçamento para investimento em outros setores da economia. Dessa forma, a eficácia das políticas públicas adquire ainda mais relevância como um fator essencial para que se evite a perda de qualidade nos projetos públicos, visto que os desafios se tornam maiores em cenários com orçamento restrito.

O Brasil – pelo tamanho de sua população, extensão territorial, capacidade produtiva e localização geográfica – tem como característica ser um país heterogêneo, onde setores de alta produtividade coexistem com setores de muito baixa produtividade (Infante et al., 2015). A estrutura produtiva do país é bastante diversificada se comparada a seus pares latino-americanos. Entretanto, ainda há gargalos tecnológicos que dificultam maior dinamismo e que aparentemente têm se intensificado por conta de um descompasso no conteúdo tecnológico dos bens de capital da indústria. O principal desses gargalos está associado à falta de conhecimento acerca do potencial de crescimento futuro dos estados e microrregiões,¹ o que está diretamente ligado ao recebimento de investimento local de empresas com maior potencial de transbordamento e de projetos capazes de destacar os setores produtivos que são dinamizadores do crescimento econômico.

Para o entendimento do potencial de crescimento futuro, é necessário conhecer esses gargalos tecnológicos a fim de entender o porquê de as regiões apresentarem taxas muito divergentes de crescimento econômico.

As diferentes taxas de crescimento econômico entre os países têm sido, por décadas, tema de debate. O porquê dessa divergência foi foco de atenção de muitos trabalhos e os fatores explicativos são variados, incluindo crescimento populacional (Diamond, 1965; Kuznets, 1955), qualidade das instituições (Chang, 2002; Stiglitz, 2000), origens do processo de colonização (Acemoglu, Johnson e Robinson, 2001; North 1981), abertura comercial (Krueger, 1998), progresso tecnológico e capital

^{1.} Microrregiões são divisões feitas pelo Instituto Brasileiro de Geografia e Estatística (IBGE) com a finalidade de integrar a organização, o planejamento e a execução de funções públicas de interesse comum. Em termos espaciais, são maiores que municípios e menores que macrorregiões.

humano (Solow, 1956; Mankiw, Romer e Weil, 1992), fatores geográficos (Krugman, 1991; Sachs, 2003), entre outros.

Mais recentemente, com a multidisciplinaridade, outras abordagens se destacaram na tentativa de entender o porquê de as economias apresentarem diferentes taxas de crescimento e de propor medidas que tentem incorporar um conjunto de fatores relacionados ao potencial de crescimento futuro dos países. Esses fatores não são pautados em métricas da quantidade de capital físico, capital humano, entre outros, mas sim do potencial das economias por meio de suas inter-relações comerciais e da capacidade de estas serem intensificadas com base na diversificação e na exclusividade do que uma economia exporta, tal como também na capacidade de se beneficiar na cadeia global de valor por meio de relações comerciais com outras economias. Essa teoria ficou conhecida como abordagem da complexidade econômica, que se iniciou com a proposta de um índice a partir do trabalho seminal de Hidalgo e Hausmann (2009)² e posteriormente recebeu modificações a partir de uma versão não linear com os trabalhos de Tacchella *et al.* (2012; 2013).

A literatura sobre a complexidade econômica pode, em alguma medida, ser considerada como uma formalização do estruturalismo latino-americano, pela proximidade com as ideias de Furtado (1961) e Prebisch (1949). Também tem proximidade com a literatura sobre política industrial (Rowthorn e Ramaswamy, 1999; Rodrik, 2004; 2010; Devlin e Moguillansky, 2013), tanto por destacar a importância da estrutura produtiva para o crescimento de um país quanto por enfatizar, mesmo sem a devida citação, a questão da elasticidade-renda da demanda à la Thirlwall (1979). Ao enfatizar a diversificação, a teoria da complexidade destaca a industrialização; ao destacar a exclusividade, a teoria destaca enfatiza a importância do setor no fornecimento internacional. Entretanto, apesar de considerar a relevância da teoria estruturalista, este trabalho também evidencia alguns pontos de divergência com a mesma – principalmente da ideia de que a mudança estrutural ocorre com a mudança de setores de baixa produtividade para setores de alta produtividade. Isso seria aceito, se fosse comprovada a baixa produtividade do trabalho dados investimentos em capital e inovação. No entanto, a literatura sobre esse tema ainda é bastante escassa.

Com isso, este trabalho tenciona responder se há indícios de uma relação positiva dos créditos do BNDES para a sofisticação da estrutura produtiva das microrregiões do

^{2.} Essa abordagem tem recebido uma atenção crescente da literatura (Caldarelli *et al.*, 2012; Cristelli, Tacchella, e Pietronero, 2015; Felipe *et al.*, 2012; Gala, 2017; Gala *et al.*, 2017; Hartmann *et al.*, 2017; Hausmann *et al.*, 2013; e Hausmann e Hidalgo, 2010; 2011). Para o caso do Brasil, em um contexto regional, tem-se os trabalhos Verheij e Oliveira (2020); Herrera, Strauch e Bruno (2021); Operti *et al.* (2018); e Teixeira, Míssio e Dathein (2022).

Brasil. Ao mesmo tempo, questiona-se se a intensidade desse transbordamento poderia variar dado o porte de empresas que recebem os recursos. Esse último ponto deriva da ideia de que, como sustentam Nogueira e Zucoloto (2019), a baixa produtividade, a baixa maturidade e o baixo conteúdo técnico dos postos de trabalho da maior parte das micro e pequenas empresas (MPEs) brasileiras criam um ambiente pouco propício para a absorção dos "transbordamentos schumpeterianos". Assim, ao se direcionar créditos para essas firmas, há uma melhora nesse ambiente que acaba por se refletir na estrutura produtiva como um todo. Essas são as principais questões que se pretende responder ao final do trabalho e, a depender das respostas, inferir em que medida a concessão de créditos por parte do BNDES está presa a um processo de endogeneidade, verificando-se mais aquilo que Nogueira et al. (2012) designaram por armadilha do paradoxo de Tostines. Essa "armadilha" se refere a um processo no qual um instrumento de política pública acaba sendo capturado pelas empresas que dispõem de melhores condições para acessá-lo e, exatamente por essa condição, seriam as empresas que menos carecem desse instrumento. Isso gera um círculo virtuoso em que as empresas com melhores condições recebem mais recursos e, por consequência, vão aumentando ainda mais as condições para obtenção de fundos de outros instrumentos de políticas públicas. Isso é vantajoso do ponto de vista empresarial, mas merece cautela quando o assunto é gestão pública.3

Com isso, o objetivo geral deste trabalho é verificar se há indícios de uma relação espacial entre os recursos do BNDES (por porte de empresas) e a sofisticação produtiva das microrregiões do Brasil. Destacam-se os objetivos específicos a seguir.

- 1) Criar índices de complexidade econômica nas versões linear e não linear para as microrregiões do Brasil.
- 2) Mapear os créditos do BNDES por microrregiões e por porte de empresas.
- Verificar a hipótese de transbordamento dos créditos do BNDES para a complexidade econômica das diversas microrregiões do país.

A falta de conhecimento acerca do potencial dos financiamentos do BNDES em termos de transbordamento para a economia como um todo (em termos estruturais) dificulta a tomada de decisão por parte dos agentes responsáveis pelas políticas públicas.

^{3.} Os autores adotaram como alegoria uma famosa campanha publicitária da década de 1990 de uma marca de biscoito que se baseava na ideia de um ciclo retroalimentado de causa e efeito, que ficou conhecido como paradoxo de Tostines. Fenômenos da mesma natureza são também descritos por George Soros (2000) ao analisar o mercado financeiro global, caracterizando-o como o que chamou de sistema reflexivo.

Menor ainda é o conhecimento com relação aos diferentes portes de empresas que recebem os aportes. Este trabalho tenta lançar um pouco de luz sobre essa tríade (financiamento do BNDES, porte de empresas e mudança estrutural) cuja relação aparenta ser condição *sine qua non* para o entendimento da dinâmica econômica e que, apesar dessa potencial relevância, tem recebido pouca atenção na literatura.

O trabalho se divide em quatro partes, incluindo esta introdução. A segunda parte discute materiais e métodos, incluindo fonte e base de dados e as medidas de complexidade propostas no trabalho. Na terceira, são apresentados e discutidos os resultados. Por fim, na quarta parte, tem-se as considerações finais.

2 METODOLOGIA

Os objetivos propostos neste trabalho envolveram um razoável esforço empírico e de *machine learning* para a criação dos índices de complexidade econômica nas duas versões (linear e não linear). O nível de detalhamento do projeto impõe a necessidade da utilização de várias metodologias. De início foi necessário fazer a organização e o tratamento da base de dados e associar esses dados à estrutura produtiva do Brasil por meio de análise espacial, de redes e de técnicas descritivas (indicadores espaciais, estatística básica, mapas etc.). Posteriormente foram criados os índices propriamente ditos a fim de interpretá-los de acordo com a teoria e, por fim, verificar se existe relação de transbordamento dos financiamentos do BNDES para a complexidade econômica das microrregiões do Brasil e se isso muda de acordo com o porte das empresas que receberam os aportes financeiros.

2.1 Fonte e base de dados

Neste trabalho, foram utilizadas bases de dados de exportações e financiamentos do BNDES⁴ para a indústria de transformação. Os dados de exportações foram coletados na plataforma do Comex Stat,⁵ e os dados de financiamentos do BNDES foram coletados na própria plataforma da instituição. Foram utilizadas as operações indiretas automáticas de 2009 a 2020. Os dados de financiamentos foram deflacionados pelo Índice Nacional de Preços ao Consumidor Amplo (IPCA) tendo 2020 como ano-base.

^{4.} Disponível em: http://www.bndes.gov.br/wps/portal/site/home/transparencia/centraldedownloads. Acesso em: 16 nov. 2023.

^{5.} Disponível em: http://comexstat.mdic.gov.br/en/home. Acesso em: 16 nov. 2023.

2.2 Abordagem linear da complexidade econômica

Nesta seção será apresentada a teoria da complexidade econômica na versão linear. Existe uma estreita relação entre a abordagem da complexidade econômica e a teoria neoestruturalista, visto que ambas consideram a importância da diversificação da estrutura produtiva e a agregação de tecnologia ao produto exportado. As medidas de complexidade econômica partem da verificação do índice de vantagem comparativa revelada (VCR) criado por Balassa (1965),6 conforme mostra a equação (1).

$$VCR_{mp} = \frac{\left(\frac{x_{mp}}{X_m}\right)}{\left(\frac{\sum_{m} x_{mp}}{\sum_{m} X_m}\right)} \tag{1}$$

Na equação (1), x_{mp} se refere à exportação do produto p na microrregião m; X_m se refere à exportação total da j-ésima microrregião. O índice VCR é necessário para a criação da matriz que conecta as microrregiões aos produtos que elas exportam (M_{mp}) e, como apresentado na equação (2), a matriz terá valor zero se VCR for < 1 e valor 1 se VCR for \geq 1.

$$M_{mp} = \begin{cases} 1 \text{ se } IVCR_{mp} \ge 1\\ 0 \text{ se } IVCR_{mp} < 1 \end{cases}$$
 (2)

A partir dos índices VCR, é possível saber a diversificação e a ubiquidade inicial dos países exportadores.

$$k_{m,0} = \sum_{p=1}^{N} M_{mp}$$
 (Diversificação) (3)

$$k_{p,0} = \sum_{m=1}^{N} M_{mp} \text{ (Ubiquidade)}$$

As medidas de diversificação e ubiquidade são fatores relevantes na verificação inicial das características estruturais de uma microrregião, mas uma análise mais avançada por meio de redes em um processo iterativo só é possível por meio do método de iteração, apresentado nas equações a seguir (Hidalgo e Hausmann, 2009).

$$k_{m,n} = \frac{1}{k_{m,0}} \sum_{p=1}^{N} M_{mp} \ k_{p,n-1} \tag{5}$$

$$k_{p,n} = \frac{1}{k_{p,0}} \sum_{m=1}^{N} M_{mp} \ k_{m,n-1} \tag{6}$$

^{6.} O método de cálculo da VCR é muito próximo do método conhecido como quociente locacional. No entanto, VCR é mais utilizado para dados de comércio.

Nas equações (5) e (6), a diversificação média das iterações é representada por $k_{m,n}$ e a ubiquidade média é representado por $k_{p,n}$. Partindo de $k_{m,n}$ (microrregiões), têm-se as medidas generalizadas de diversificação $(k_{m,0};\ k_{m,2};\ k_{m,4};\ k_{m,8};k_{m,10})$ e as medidas generalizadas de ubiquidade $(k_{m,1};\ k_{m,3};\ k_{m,5};\ k_{m,7};k_{m,9})$ Partindo de $k_{p,n}$ (produtos), têm-se as medidas generalizadas de ubiquidade $(k_{p,0};\ k_{p,2};\ k_{p,4};\ k_{p,8};k_{p,10})$ e as medidas generalizadas de diversificação $(k_{p,1};\ k_{p,3};\ k_{p,5};\ k_{p,7};k_{p,9})$ das microrregiões exportadoras desses produtos.

Conforme Hidalgo e Hausmann (2009), essas iterações devem ser realizadas até o momento em que o *ranking* das economias fica inalterado. Isso seria compatível ao autovetor associado ao maior autovalor da matriz de microrregiões $\widetilde{M}_{mm'}$ presente nas equações (7) e (8). A equação (7) é decorrência da inserção da equação (6) na equação (5).

$$k_{m,n} = \sum_{m'} \widetilde{M}_{mm'} \, k_{m',n-2} \tag{7}$$

Na qual

$$\widetilde{M}_{mm'} = \sum \frac{M_{mp} M_{m'p}}{k_{m,0} k_{p,0}} \tag{8}$$

Após isso, esse valor passa por uma normalização, tal como a equação (9).

$$ICE = \frac{\vec{K} - \langle \vec{K} \rangle}{stdev(\vec{K})}$$
 (9)

Na equação (9), \overrightarrow{K} representa o autovetor associado ao segundo maior autovalor de \widetilde{M}_{mmn} , < > representa uma média, e *stdev*, o desvio-padrão.

2.3 Abordagem não linear da complexidade econômica

Na metodologia de Hidalgo e Hausmann (2009), um produto terá sua complexidade aumentada se for exportado por países mais diversificados. Tacchella et al. (2012; 2013) consideram que isso fornece uma informação limitada da complexidade do produto, visto que economias diversificadas exportam quase todos os tipos de produtos – tanto de alta como de baixa sofisticação. Dessa forma, a medida fitness parte de um processo iterativo não linear, tal como apresentado nas equações a seguir.

$$\tilde{F}_{m,n} = \sum_{p} M_{mp} Q_{p,n-1} \tag{10}$$

$$\tilde{Q}_{p,n} = \frac{1}{\sum_{m} M_{mp} \left(\frac{1}{F_{m,n-1}}\right)} \tag{11}$$

Nas equações (10) e (11), $\tilde{F}_{m,n}$ representa a fitness (complexidade) de determinada microrregião no período n; $\tilde{Q}_{p,n}$ é a complexidade de determinado produto no período n; e M_{mp} é a matriz de microrregiões e produtos, com valor 0 ou 1 a depender se o país exporta determinado produto com VCR. Uma normalização dos valores é feita a cada iteração, tal como demonstrado nas equações a seguir.

$$F_{m,n} = \frac{\tilde{F}_{m,n}}{\langle \tilde{F}_{m,n} \rangle_c} \tag{12}$$

$$Q_{p,n} = \frac{\tilde{Q}_{p,n}}{\langle \tilde{Q}_{p,n} \rangle_p} \tag{13}$$

De acordo com Tacchela *et al.* (2012; 2013), o índice *fitness*⁷ evita que a complexidade dos produtos e dos países seja superestimada.

2.4 Produtividade associada à cesta de exportações (EXPY)

O índice que mede a produtividade associada à cesta de exportações de uma economia foi proposto por Hausmann, Hwang e Rodrik (2007). A proposta desses autores foi de avaliar a eficiência produtiva e o nível de especialização na variedade de produtos que uma economia exporta. O cálculo da produtividade implícita do produto (*prody*) é obtido por meio da ponderação da vantagem comparativa revelada⁸ com o nível de renda *per capita* de cada microrregião. A equação (14) apresenta o índice proposto pelos autores. Essa abordagem foi adaptada para se adequar aos objetivos da pesquisa em questão.

$$PRODY_{K} = \sum_{J} \frac{\left(\frac{x_{jk}}{x_{j}}\right)}{\left(\frac{\sum_{j} x_{jk}}{\sum_{j} x_{j}}\right)} Y_{j}$$
(14)

Na equação (14), $PRODY_k$ representa a produtividade implícita do produto k; x_{jk} se refere à exportação do produto k na microrregião j; X_j se refere à exportação total da j-ésima microrregião; e Y_j , à renda per capita da microrregião j. Dessa forma, o numerador (x_{jk/X_j}) representa a participação de determinada mercadoria na cesta de exportações da respectiva microrregião, e o denominador $\frac{\Sigma_{j}}{\Sigma_{j}}$ representa a participação dessa

^{7.} Mais detalhes desse índice podem ser vistos em Caldarelli et al. (2012), Cristelli, Tacchella e Pietronero (2015) e Operti et al. (2018).

^{8.} Originalmente proposto por Balassa (1965).

mesma mercadoria na cesta de exportações do país. A soma (Σ_J) da ponderação da renda *per capita* pelo índice de VCR de determinado produto, para todas as microrregiões, corresponde à produtividade implícita do produto no país.

Em relação à especialização da gama de produtos exportados (*EXPY*), esse indicador é calculado somando a participação de cada produto na cesta de exportações de cada microrregião, multiplicada pelo *PRODY* desse produto no país, tal como mostra a equação (15).

$$EXPY_{jt} = \sum_{K} \frac{X_{jkt}}{X_{jt}} PRODY_{K}$$
 (15)

Esse índice (*EXPY*) representa a produtividade associada à cesta de exportações de determinada microrregião j no período t; X_{jkt} é a exportação do produto k na microrregião j e no tempo t; e X_{jt} é a exportação total da microrregião no tempo t.

2.5 Conceitos básicos de análise espacial

A econometria espacial surgiu recentemente como uma área de estudos dentro da econometria e assume uma relevância significativa na explicação de certos fenômenos na área da economia e em outras dimensões (Anselin, Florax, e Rey, 2013). A distinção fundamental entre econometria tradicional e econometria espacial reside na inclusão dos efeitos espaciais na análise de regressão desta última.

Uma das primeiras considerações em relação a um modelo espacial envolve a análise de sua dependência, que se refere à interação entre os indivíduos de uma amostra em diferentes locais analisados. Em outras palavras, nesta área da econometria, examinamos se existe uma relação espacial entre as variáveis, onde regiões próximas podem ter um impacto maior sobre essas variáveis que em regiões mais distantes. Esse fenômeno é denominado dependência espacial e ocorre quando uma variável de interesse em uma determinada região é influenciada pelas regiões vizinhas.

A econometria espacial se dedica a analisar casos em que há uma interdependência entre diferentes locais, ou seja, uma região pode ser influenciada por regiões próximas e até mesmo por regiões localizadas além das vizinhas mais imediatas. Para isso que se torna essencial uma análise exploratória de dados espaciais (Aede) para verificação de dependência espacial entre as variáveis. A Aede verifica as hipóteses de dependência e autocorrelação espacial. Para a verficação da hipótese de autocorrelação, é necessário ter uma matriz de pesos espaciais baseada na ideia de fronteira geográfica. Essa hipótese pode ser verificada por testes, tal como o I de Moran – relação da covariância pela variância dos dados (Almeida, 2012) –, e por diagrama de dispersão com a defasagem da variável de interesse no eixo vertical e a variável sem defasagem

no eixo horizontal. O coeficiente da reta pode assumir valores positivos ou negativos, indicando assim a direção da possível correlação.

O coeficiente I de Moran é utilizado para dividir os dados em quatro quadrantes que representam a relação entre as variáveis. Conforme Almeida (2012), esses quadrantes são rotulados como baixo-baixo (BB), alto-alto (AA), baixo-alto (BA) e alto-baixo (AB). Quando uma região está no quadrante BB, isso significa que tanto a região em análise quanto suas vizinhas possuem valores abaixo da média. Por sua vez, AA denota que tanto essa região quanto suas áreas vizinhas apresentam valores acima da média. Se a região se encontra no quadrante BA, isso indica que a região possui valores baixos enquanto as vizinhas têm valores altos. No entanto, se as vizinhas têm valores baixos enquanto a região em análise possui valores altos, ela será classificada no quadrante AB.

A autocorrelação dos dados espaciais pode se dar de forma global ou local. A global pode mascarar padrões locais, já que é possível que não haja autocorrelação global nos dados devido à grande quantidade de regiões, mas, ao mesmo tempo, pode existir autocorrelação em regiões específicas, o que é denominado autocorrelação espacial local. A estatística de Moran também pode ser empregada para identificar a presença desse tipo de autocorrelação por meio dos indicadores locais de associação espacial (local indicators of spatial association — Lisa), os quais combinam e ajustam informações do gráfico de dispersão do I de Moran e do mapa de significância de associação local.

A autocorrelação também pode ser verificada de uma variável para outra, ou seja, de forma bivariada. A análise bivariada é empregada quando o objetivo é investigar se os valores de uma variável em uma determinada região estão relacionados aos valores de outra variável em regiões próximas. Em geral, os princípios da análise univariada e bivariada permanecem os mesmos, porém, nesta última, considera-se uma variável em relação à outra tanto no gráfico de dispersão quanto na análise de agrupamento. Por exemplo, o quadrante AA pode indicar que uma variável apresenta valores elevados em uma região, enquanto a outra variável exibe valores elevados em regiões vizinhas.

2.6 Modelo econométrico espacial

Considerando um modelo econométrico por mínimos quadrados ordinários (MQO),⁹ pode-se representar o modelo estimado neste trabalho conforme descrito a seguir.

^{9.} $y = X\beta + \epsilon$, em que y é um vetor com os dados da variável dependente, X é uma matriz de n x k regressores, e ϵ representa o termo estocástico.

$$lnICE_{i} = \beta_{0} + \beta_{1}lnMicro_{i} + \beta_{2}lnPequena_{i} + \beta_{3}lnM\acute{e}dia_{i} + \beta_{4}lnGrande_{i} + \beta_{5}lnVa_serv_{i} + \beta_{6}lnVa_agro_{i} + \beta_{7}lnVa_ind_{i} + \varepsilon_{i}$$

$$(16)$$

$$lnICE_Fit_i = \beta_0 + \beta_1 lnMicro_i + \beta_2 lnPequena_i + \beta_3 lnMédia_i + \beta_4 lnGrande_i + \beta_5 lnVa_serv_i + \beta_6 lnVa_agro_i + \beta_7 lnVa_ind_i + \varepsilon_i$$
(17)

$$lnEXPY_{i} = \beta_{0} + \beta_{1}lnMicro_{i} + \beta_{2}lnPequena_{i} + \beta_{3}lnM\acute{e}dia_{i} + \beta_{4}lnGrande_{i} +$$

$$\beta_{5}lnVa_serv_{i} + \beta_{6}lnVa_agro_{i} + \beta_{7}lnVa_ind_{i} + \varepsilon_{i}$$

$$(18)$$

Nas equações (16), (17) e (18), i representa as microrregiões do Brasil, com i = 1...558; ICE é o índice de complexidade econômica na versão linear (Hidalgo e Hausmann, 2009); ICE_Fit é o índice de complexidade econômica na versão não linear (Tacchella et al., 2012); EXPY, o índice de produtividade associada ao nível de renda (Hausmann, Hwang, e Rodrik, 2007); Micro, Pequena, Média e Grande representam os portes de empresas para as quais o BNDES forneceu financiamento; Va_serv , Va_agro e Va_ind representam o valor adicionado dos setores de serviço, agropecuária e indústria, respectivamente; e ε representa o termo estocástico do modelo.

O modelo MQO não leva em conta os efeitos espaciais nas variáveis e entre elas. Se verificada a hipótese de autocorrelação espacial, torna-se necessária a estimação de um modelo econométrico espacial. O primeiro passo ao se trabalhar com um modelo espacial é a criação de uma matriz de pesos espaciais.

A diferença do modelo econométrico espacial para o MQO está na inclusão da matriz de pesos espaciais. A autocorrelação espacial pode ser verificada no termo de erro ou na variável dependente, o que torna necessária a estimação dos modelos *spatial error model* (SEM)¹⁰ e *spatial autoregressive model* (SAR),¹¹ respectivamente. No entanto, caso a autocorrelação ocorra simultaneamente no termo de erro e na variável dependente, deverá ser considerada a estimação do modelo *spatial Durbin model* (SDM).

Florax, Folmer e Rey (2003) apresentam os procedimentos para a regressão de um modelo *cross-section*. Após a estimação de um modelo por MQO, devem ser observados os valores dos multiplicadores de lagrange por erro (ML λ) e defasagem (ML ρ). Se nenhum apresentar significância, deve-se manter um modelo MQO. Se apenas ML λ for significativo, deve-se estimar o modelo SEM. Se apenas ML ρ for significativo, deve-se

^{10.} A dependência espacial ocorre no resíduo.

^{11.} Capta-se a dependência espacial por meio da estimação de um coeficiente que utiliza a variável dependente defasada espacialmente.

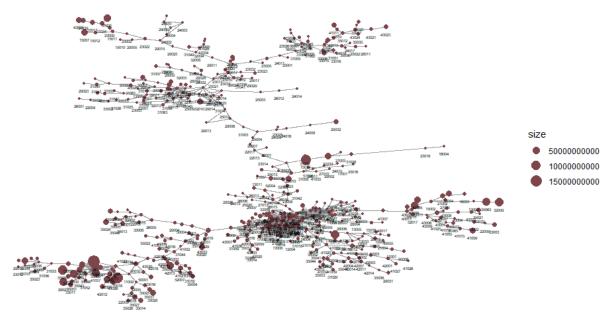
estimar o modelo SAR. Se ambos forem significativos, deve-se estimar o modelo que apresentou maior significância.¹²

Para garantir a confiabilidade de um modelo econométrico espacial, é necessaria a realização de um conjunto de testes, para verificar se existe autocorrelação, multicolinearidade e heterocedasticidade. O teste I de Moran é utilizado para verificar a hipótese de autocorrelação espacial nos resíduos da regressão. Esse teste tem como hipótese nula $(H_{\scriptscriptstyle 0})$ que os erros são normalmente distribuídos. Para a hipótese de heterocedasticidade, é utilizado o teste de Breusch-Pagan, com $H_{\scriptscriptstyle 0}$ indicando uma distribuição normal (homocedasticidade). Modelos método de momentos generalizados (generalized method of moments – GMM) e de variáveis instrumentais são opções para quando o modelo apresenta heterocedasticidade. O teste de Jarque-Bera verifica se os resíduos da regressão são normalmente distribuídos. Para modelos GMM, se utiliza o teste de Anselin-Kelejian, com hipótese nula de não autocorrelação espacial dos resíduos do modelo.

Por fim, a multicolinearidade ocorre quando as variáveis explicativas do modelo possuem relações lineares. Em geral, a multicolinearidade é verificada por meio do fator de inflação da variância (VIF). Um VIF > 10 representa um R² > 0,90, o que indica possível colinearidade entre essas variáveis.

3 RESULTADOS

3.1 Análise exploratória de dados espaciais


As figuras 1 e 2 apresentam as redes baseadas em proximidade para as microrregiões do Brasil e para os produtos exportados por elas. Uma rede é uma estrutura composta por nós (nodes) e arestas (edges) que representam, respectivamente, as entidades e as conexões entre elas. No contexto do artigo, os nós são as microrregiões, e as arestas representam as relações de proximidade entre os produtos exportados por essas microrregiões. As microrregiões estão representadas por códigos de cinco dígitos, e os produtos, por códigos na posição SH4.¹³ Os nodes representam produtos e seus tamanhos são proporcionais ao total de comércio das microrregiões em determinado produto.

^{12.} O modelo Sarma também é uma opção para casos em que ambos (MLρ e MLλ) apresentam significância estatística.

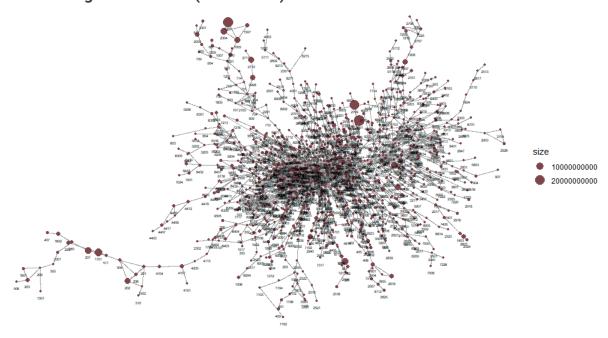
^{13.} A descrição dos produtos exportados segue o Sistema de Designação e de Codificação de Mercadorias, conhecido como Sistema Harmonizado (SH). Os dados processados utilizam códigos de quatro dígitos (SH4) para descrever os produtos exportados.

Os links conectam os produtos com alta probabilidade de serem exportados por mais de uma microrregião. A probabilidade de uma região produzir um novo produto depende de quão próximo esse produto está de outros já produzidos nessa região. A habilidade dos países em se diversificar e mover para produção de produtos mais complexos é dependente de seu local no product space (Hausmann et al., 2013). Dessa forma, o local de uma microrregião no product space irá captar informações com relação ao potencial produtivo e à capacidade de expandir esse potencial dados os produtos já produzidos e exportados.

FIGURA 1
Rede baseada em proximidade para as microrregiões do Brasil (2009-2020)

Fonte: Comex Stat. Disponível em: http://comexstat.mdic.gov.br/en/home. Acesso em: 16 nov. 2023. Elaboração dos autores.

- Obs.: 1. O tamanho da bolha representa a participação da microrregião nas exportações do país.
 - A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).


Pela quantidade de microrregiões (558) nela exibidas, a figura que mostra a rede como um todo é de difícil visualização de seus detalhes. No entanto, é possível observar padrões específicos, tais como as microrregiões que estão isoladas na rede. É o caso de Mazagão (16004 – AP), que só está ligado com Sertão de Crato (23018 – CE). Isso indica que os produtos exportados pela microrregião de Mazagão são próximos dos produtos exportados pela microrregião de Crato e distantes de outras microrregiões, principalmente as que estão mais conectadas com outros *nodes* dentro

da rede. O mesmo caso se observa para Porto Seguro (29032 – BA), que está conectado apenas com Borborema Potiguar (24014 – RN).

Esses dois casos são observados no extremo direito da rede de microrregiões. Ou seja, essas microrregiões isoladas apresentam pouco potencial de expansão para novos mercados em decorrência da falta de iteratividade com microrregiões que produzem produtos que são mais conectados em redes (em geral, mais sofisticados). Como a relação de proximidade ocorre com apenas uma ou algumas outras microrregiões, espera-se maior dificuldade em expandirem-se para outros mercados e, portanto, menor é a expectativa de crescimento e de sofisticação de sua estrutura produtiva.

Outro resultado relevante foi que as microrregiões com maior volume de exportações (nodes maiores) não fazem parte do cluster da rede em que ocorrem as maiores ligações. É possível observar que as microrregiões com maior volume de exportações estão no extremo esquerdo da rede (figura 1), enquanto as microrregiões com maiores ligações estão na parte central inferior da rede. Isso indica que a base teórica da abordagem da complexidade econômica, que é criada para analisar a relação comercial entre países, é totalmente válida para o contexto das microrregiões do Brasil. A abordagem tradicional de Hidalgo e Hausmann (2009) considera que a complexidade é decorrência da diversificação e da exclusividade (não ubiquidade) dos produtos que um local exporta e não apenas da quantidade exportada. Dessa forma, microrregiões podem ter vantagens competitivas em setores específicos, resultando em altas exportações de produtos simples ou de baixa complexidade — o que deslocaria essas microrregiões para fora do cluster com maiores ligações.

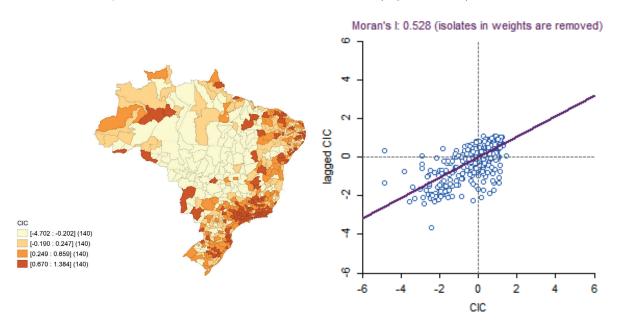
FIGURA 2
Rede baseada em proximidade para os produtos exportados pelas microrregiões do Brasil (2009-2020)

Fonte: Comex Stat. Disponível em: http://comexstat.mdic.gov.br/en/home. Acesso em: 16 nov. 2023. Elaboração dos autores.

Obs.: 1. O tamanho da bolha representa a participação do produto nas exportações do país.

2. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).

A figura 2 apresenta o *product space* dos produtos exportados pelas microrregiões do Brasil. O *product space* mostra como os produtos exportados pelas microrregiões do Brasil estão conectados entre eles. Espera-se que produtos com maiores conexões sejam produtos mais sofisticados. Um exemplo é o computador, que apresenta ligações com várias outras indústrias fornecedoras de insumos.


Para o caso do exercício empírico, podemos pegar os produtos 1501 (gorduras de porco e de aves) e 4101 (couro e peles de bovinos) que estão ligados com apenas um outro produto e afastado da parte central da rede. É possível perceber que são produtos que não necessitam de relação com muitas outras indústrias e que não estão ligados a outras categorias. Dessa forma, é possível dizer que os produtos contidos em uma rede com inúmeras ligações tendem a ser mais complexos por necessitarem estar relacionados com muitas outras indústrias para serem produzidos.

A figura 3 apresenta as medidas de complexidade econômica pela versão linear e não linear e a produtividade das exportações das microrregiões do Brasil. A figura contém mapas que classificam os valores da complexidade das microrregiões do país por quartis e gráficos que representam o índice de Moran, os quais têm por objetivo verificar como os valores estão correlacionados em termos espaciais. Ou seja, uma reta linear próxima de 45 graus, como no caso da complexidade econômica pela versão linear representada na figura 2, indica que existe autocorrelação espacial para a complexidade econômica – microrregiões de alta complexidade tendem a ser vizinhas de microrregiões com alta complexidade e microrregiões de baixa complexidade tendem a ser vizinhas de microrregiões de baixa complexidade.

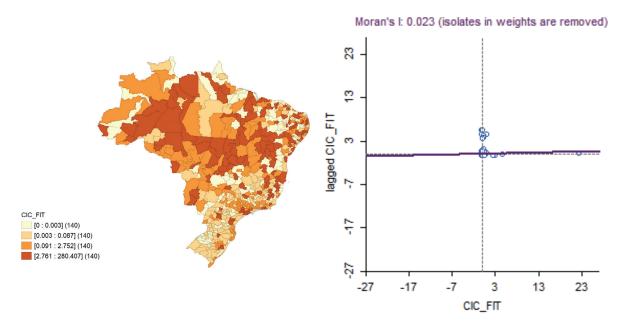
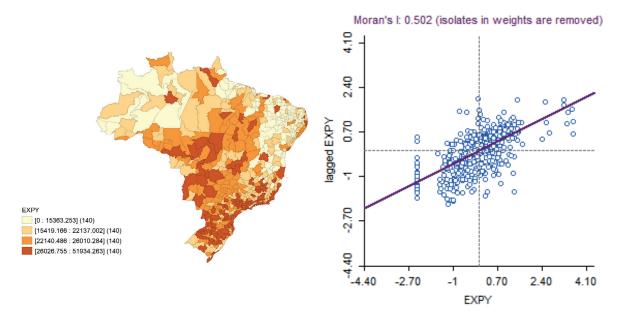

Observa-se uma diferença significativa entre as duas medidas de complexidade, principalmente com relação às microrregiões do Norte e Centro-Oeste do país. A medida linear é a mais tradicional e é utilizada na maioria dos trabalhos. Entretanto, alguns trabalhos têm destacado que a abordagem não linear supera a abordagem tradicional em termos de qualidade das classificações de produtos e locais – países, regiões (Mariani et al., 2015). No que tange à produtividade das exportações, observaram-se valores altos para a maioria das microrregiões das regiões Sul e Sudeste e algumas microrregiões da região Centro-Oeste do país.

FIGURA 3
Análise espacial da complexidade nas versões linear (eigenvalues) e não linear (fitness) e da produtividade associada à cesta de exportações (EXPY) (2009-2020)

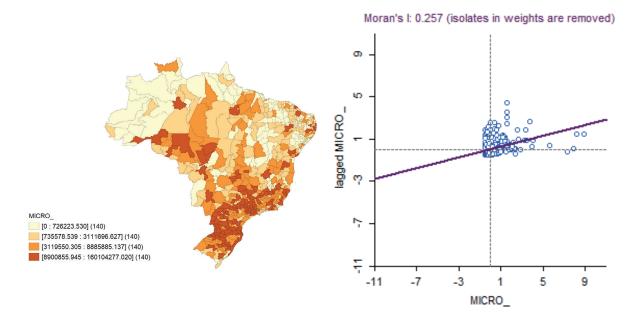

3A - Complexidade econômica na versão linear (eigenvalues)

3B - Complexidade econômica na versão não linear (fitness)

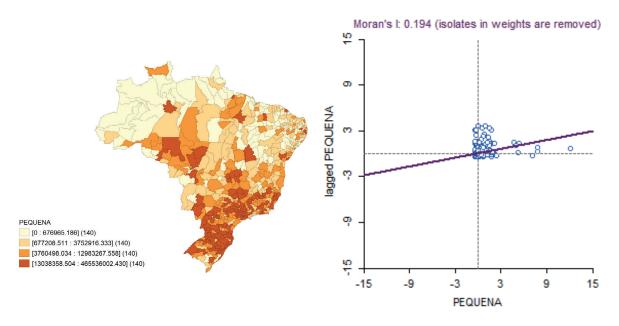
3C - Produtividade associada à cesta de exportações (EXPY)

Elaboração dos autores.

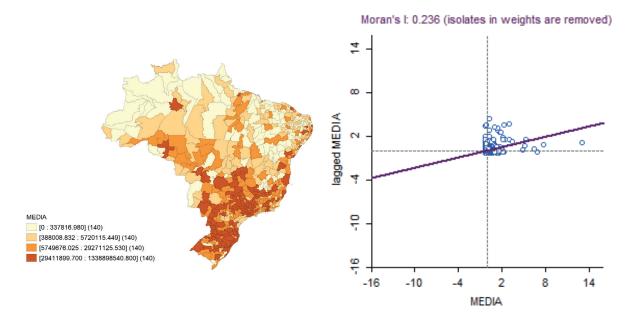
- Obs.: 1. Os mapas (lado esquerdo) estão classificados em quartis, e os gráficos (lado direito) representam a dispersão por meio do índice de Moran.
 - 2. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).


As figuras 4 e 5 retratam os financiamentos do BNDES por porte de empresas. Na figura 4 tem-se a divisão por quatro categorias de portes (micro, pequena, média e

grande) e na figura 5 tem-se a divisão por duas categorias, sendo: i) micro e pequenas empresas; e ii) médias e grandes empresas. Em geral, é possível observar que a maior intensidade de financiamento está concentrada nas regiões Sul e Sudeste do país.


FIGURA 4

Análise espacial de financiamentos do BNDES por porte de empresas: micro, pequenas, médias e grandes (2009-2020)

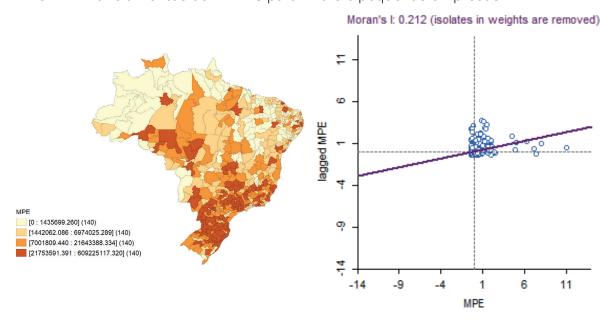

4A - Financiamentos do BNDES para microempresas

4B - Financiamentos do BNDES para empresas de pequeno porte

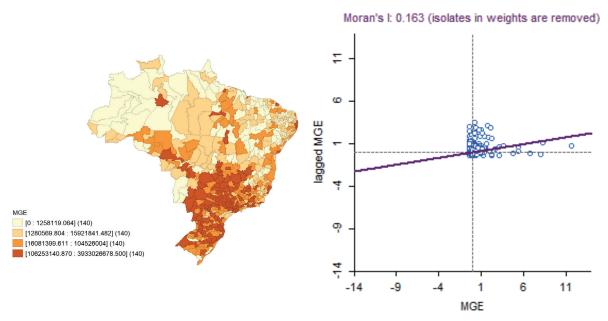
4C - Financiamentos do BNDES para empresas de médio porte

4D - Financiamentos do BNDES para empresas de grande porte

Elaboração dos autores.


Obs.: 1. Valores apenas para a indústria de transformação.

- 2. Os mapas (lado esquerdo) estão classificados em quartis, e os gráficos (lado direito) representam a dispersão por meio do índice de Moran.
- 3. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).

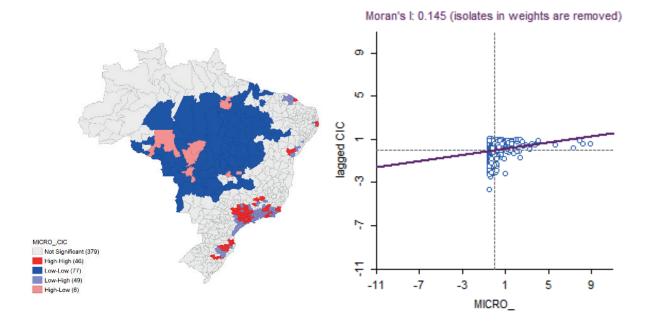

FIGURA 5

Análise espacial de financiamentos do BNDES por porte de empresas: micro e pequenas, médias e grandes (2009-2020)

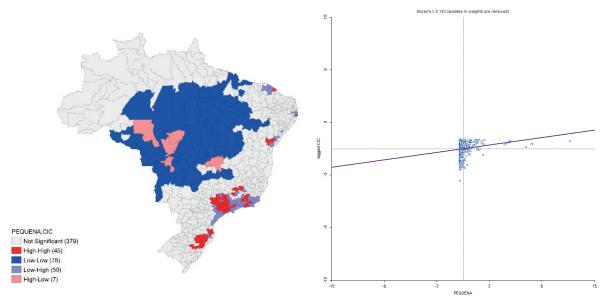
5A – Financiamentos do BNDES para micro e pequenas empresas

5B - Financiamentos do BNDES para médias e grandes empresas

Elaboração dos autores.

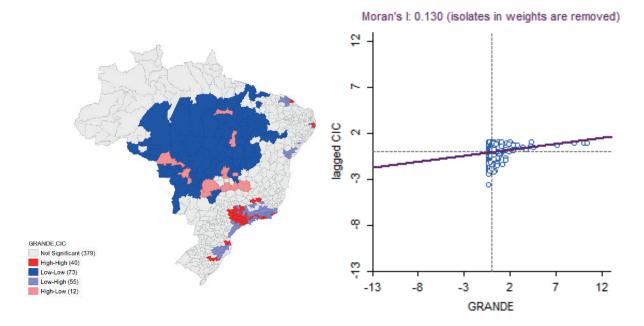

- Obs.: 1. Valores apenas para a indústria de transformação.
 - 2. Os mapas (lado esquerdo) estão classificados em quartis, e os gráficos (lado direito) representam a dispersão por meio do índice de Moran.
 - 3. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).

As figuras 6, 7 e 8 apresentam a correlação entre os recursos do BNDES (por porte de empresas) com a complexidade econômica (na versão linear, a figura 6, e não linear, a figura 7) e a produtividade das exportações (figura 8) das microrregiões do Brasil. A correlação é feita pela análise bivariada (Bilisa), que busca investigar se os valores de uma variável em uma determinada microrregião estão relacionados aos valores de outra variável em microrregiões próximas.


FIGURA 6

Bilisa: financiamentos do BNDES por porte de empresas (micro, pequenas, médias e grandes) e a complexidade econômica – versão linear (2009-2020)

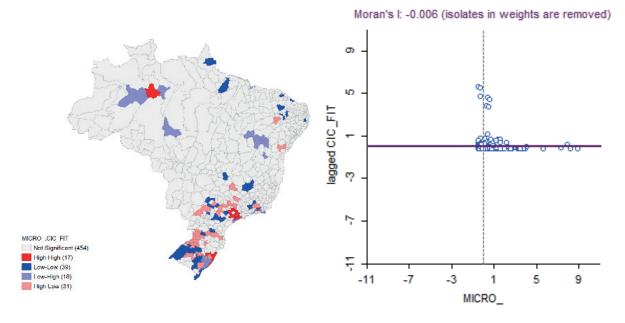

6A – Bilisa: financiamentos do BNDES para microempresas e complexidade econômica


6B – Bilisa: financiamentos do BNDES para empresas de pequeno porte e complexidade econômica

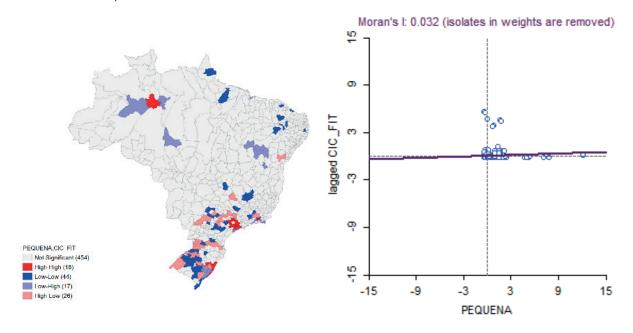
6C – Bilisa: financiamentos do BNDES para empresas de médio porte e complexidade econômica

6D – Bilisa: financiamentos do BNDES para empresas de grande porte e complexidade econômica

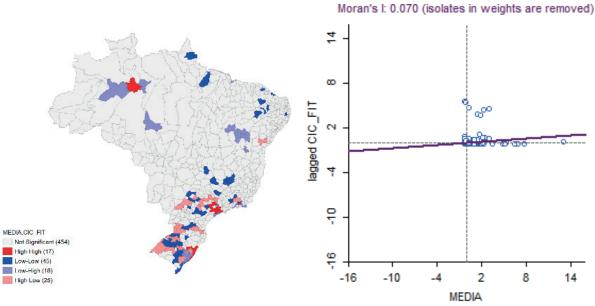
Elaboração dos autores.

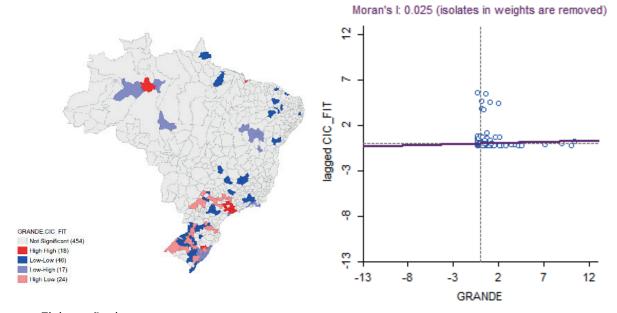

Obs.: 1. Valores apenas para a indústria de transformação.

- 2. Bilisa é utilizado para descobrir se os valores de uma variável observada numa dada região guardam correlação sistemática com os valores de uma outra variável observada em regiões vizinhas.
- 3. Os mapas (lado esquerdo) representam os *clusters*, e os gráficos (lado direito) representam a dispersão por meio do índice de Moran.
- 4. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).


FIGURA 7

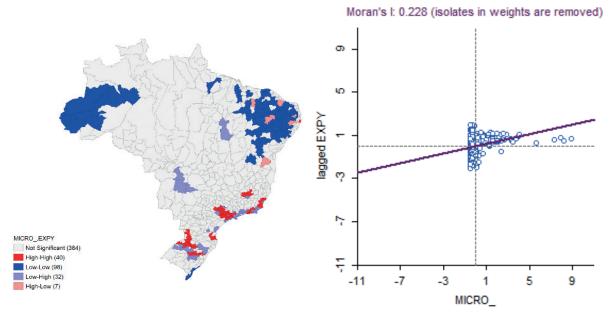
Bilisa: financiamentos do BNDES por porte de empresas (micro, pequenas, médias e grandes) e a complexidade econômica – versão não linear (2009-2020)


7A - Bilisa: financiamentos do BNDES para microempresas e complexidade econômica

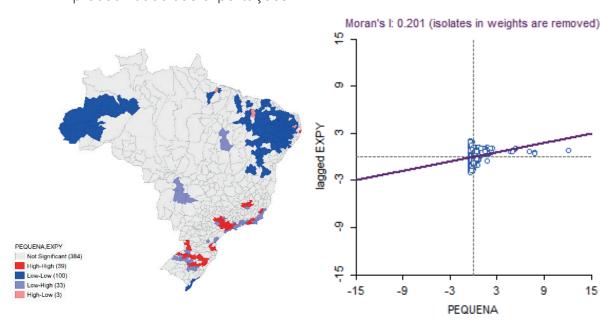

7B – Bilisa: financiamentos do BNDES para empresas de pequeno porte e complexidade econômica

7C – Bilisa: financiamentos do BNDES para empresas de médio porte e complexidade econômica

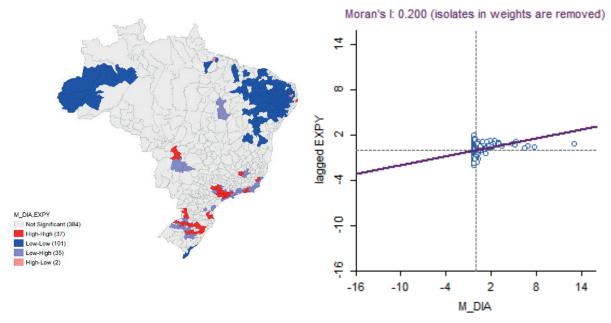
7D – Bilisa: financiamentos do BNDES para empresas de grande porte e complexidade econômica

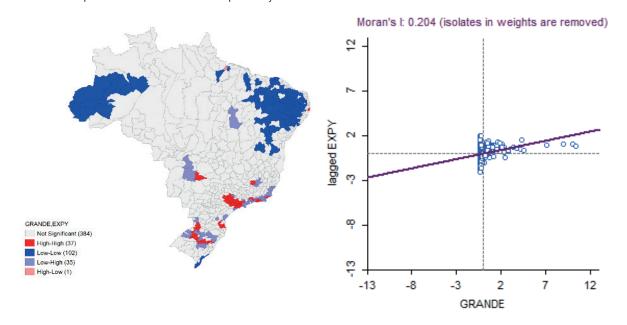

Elaboração dos autores.

- Obs.: 1. Bilisa é utilizado para descobrir se os valores de uma variável observada numa dada região guardam correlação sistemática com os valores de uma outra variável observada em regiões vizinhas.
 - 2. Os mapas (lado esquerdo) representam os *clusters*, e os gráficos (lado direito) representam a dispersão por meio do índice de Moran.
 - 3. A figura não pôde ser padronizada e revisada em virtude das condições técnicas dos originais (nota do Editorial).


FIGURA 8

Bilisa: financiamentos do BNDES por porte de empresas (micro, pequenas, médias e grandes) e a produtividade das exportações (2009-2020)


8A – Bilisa: financiamentos do BNDES para microempresas e produtividade das exportações


8B – Bilisa: financiamentos do BNDES para empresas de pequeno porte e produtividade das exportações

8C – Bilisa: financiamentos do BNDES para empresas de médio porte e produtividade das exportações

8D – Bilisa: financiamentos do BNDES para empresas de grande porte e produtividade das exportações

Elaboração dos autores.

A figura 6 evidenciou que existe um padrão próximo para os diferentes portes de empresas. Em geral, em toda a parte central do Brasil, observou-se baixa intensidade de financiamento do BNDES e baixa complexidade econômica das microrregiões vizinhas.

Isso indica que os financiamentos do BNDES são importantes para o transbordamento da complexidade econômica de microrregiões vizinhas. Em apenas alguns casos, observou-se um padrão alto-baixo, em que a microrregião recebe altos valores de financiamento do BNDES e as microrregiões vizinhas apresentam baixa complexidade. Ao mesmo tempo, verifica-se que os recursos são destinados para as microrregiões que abrigam os grandes centros econômicos e financeiros. Nesses locais (Rio de Janeiro, São Paulo, Paraná e Santa Catarina), identificou-se um padrão alto-alto, principalmente próximo das capitais desses estados, indicando que recebem altos valores de financiamento do BNDES e as microrregiões vizinhas apresentam alta complexidade econômica.

Aqui podemos destacar o *paradoxo de Tostines* discutido na introdução do trabalho. Ou seja, os locais mais complexos são os que recebem maiores recursos do BNDES (em todos os portes de empresas). Ao receberem maiores recursos, essas microrregiões tornam-se ainda mais complexas. Ocorre praticamente um círculo vicioso entre complexidade e recursos do BNDES. O site do BNDES¹⁴ destaca que o cliente deve atender a alguns requisitos para ter acesso ao financiamento, entre os quais: apresentar cadastro satisfatório, ter capacidade de pagamento e dispor de garantias suficientes para cobertura do risco da operação. Na verdade, são exatamente esses os principais obstáculos para que os pequenos negócios tenham acesso ao mercado de crédito (Nogueira et al., 2012). Dessa forma, espera-se que as micro e pequenas empresas de regiões mais distantes dos grandes centros, que tendem a ser as firmas menos estruturadas do segmento, tenham menores capacidades de dispor de garantias suficientes e assim acabam tendo menos acesso aos recursos do BNDES.

Seria dizer que as microrregiões brasileiras enfrentam padrões inerciais e idiossincráticos – inerciais no sentido de que observam-se tendências persistentes nas trajetórias econômicas que são influenciadas por fatores históricos, estruturais e institucionais; idiossincráticos visto que percebem-se nas microrregiões algumas características específicas que afetam sua evolução econômica. Buyukyazici et al. (2024) destacam que a diversificação industrial é path-dependent, no sentido de que novas indústrias se constroem com base nas capacidades pré-existentes da força de trabalho das regiões que estão parcialmente incorporadas. Em outras palavras, novas indústrias tendem a se desenvolver utilizando as habilidades e conhecimentos já presentes na mão de obra da região, construindo sobre essa base preexistente. Essas capacidades acumuladas influenciam e moldam o direcionamento das indústrias emergentes na área. Saber disso é essencial para uma indústria que visa ao lucro imediato. Contudo, não podemos confundir o objetivo da firma com o objetivo fim das políticas públicas,

^{14.} Disponível em: http://www.bndes.gov.br/wps/portal/site/home/transparencia/centraldedownloads. Acesso em: 16 nov. 2023.

as quais aumentam o leque ao levar em conta efeitos estruturais, de longo prazo, que tragam benefícios ao país.

Em outras palavras, é preciso quebrar esse paradoxo se o objetivo é reduzir a heterogeneidade estrutural do país. Ao mesmo tempo, não há estudos sobre a produtividade das MPEs nessas regiões distantes dos grandes centros. Os resultados econométricos deste trabalho tentam lançar um pouco de luz nessa questão obscura e escassa de trabalhos empíricos. Dessa forma, defendemos que estratégias no sentido de tornar a estrutura produtiva mais homogênea deverá levar em conta a intensidade de financiamento para microrregiões mais distantes dos grandes centros comerciais.

Nessa mesma linha, podemos citar o trabalho de Botelho *et al.* (2022), ao mostrar que as empresas com maior tempo de existência apresentaram melhor evolução da parcela de mercado (*market-share*) entre 2007 e 2016. O trabalho mostrou que as empresas com mais de dez anos obtiveram resultados notavelmente positivos, evidenciando sua provável vantagem no acesso a programas de apoio. Em contrapartida, empresas com menos de dez anos experimentaram resultados inferiores, indicando uma lacuna significativa nas medidas de política industrial, que não conseguiram atender adequadamente às necessidades dessas empresas emergentes durante o período avaliado.

A figura 7 também apresenta a correlação entre os recursos do BNDES por porte de empresas e a complexidade econômica, mas agora em uma versão não linear. Os resultados não apresentaram um padrão definido em termos de características regionais, tal como observado na figura 6.

A figura 8 apresentou padrões baixo-baixo (em azul) na maioria das microrregiões do Norte e Nordeste. Isso indica que são locais com baixa produtividade das exportações e são cercados por microrregiões que também apresentam baixa produtividade. Isso destaca a heterogeneidade estrutural entre as regiões do país e ascende a discussão para medidas que visam aumentar a produtividade dessas regiões.

3.2 Modelo econométrico espacial

Esta subseção traz os resultados dos modelos econométricos espaciais utilizados neste trabalho. As estimações foram feitas para três variáveis dependentes, sendo: i) o índice de complexidade na versão linear; ii) o índice de complexidade na versão não linear; e iii) o índice de produtividade associada à cesta de exportações. Foram estimados modelos MQO e GMM. As variáveis explicativas dos três modelos são *Micro*, *Pequena*, *Média* e *Grande*, e representam os portes de empresas para as quais o BNDES forneceu financiamento; *Va_serv*, *Va_agro* e *Va_ind* representam o valor adicionado dos setores de serviço, agropecuária e indústria, respectivamente.

Seguindo Anselin, Florax e Rey (2013) e com base em procedimentos explicados na seção de metodologia, alguns testes de especificação foram realizados para saber qual seria o melhor modelo a ser utilizado. Com exceção da complexidade na versão não linear, os testes indicaram que o modelo SAR seria o mais indicado. A estimação por MQO indicou alguns problemas de heterocedasticidade, o que nos levou a estimar modelos GMM. Para comparação dos resultados e para maior eficácia contra regressões espúrias, optamos por apresentar os modelos MQO, SAR, SEM e Sarma. Para o caso das estimações que tiveram o índice de complexidade na versão não linear como variável dependente, os coeficientes não apresentaram significância estatística. Isso nos impede de verificar possíveis relações entre as variáveis.

Para o caso das estimações que tiveram o índice de complexidade na versão linear como variável dependente, os coeficientes que apresentaram significância estatística indicaram que existe uma relação positiva entre o financiamento do BNDES – para médias e microempresas – e a complexidade econômica das microrregiões brasileiras. O modelo MQO captou o resultado positivo das médias empresas e os modelos SAR e SEM captaram o resultado positivo para as microempresas. Para o modelo que apresentou melhor especificação (SAR), as estimações indicaram uma relação positiva do financiamento para microempresas e uma relação negativa do valor adicionado do agronegócio para a complexidade econômica das microrregiões do Brasil.¹⁵

O parâmetro p também foi significativo, indicando que microrregiões com alta complexidade são positivamente influenciadas por microrregiões vizinhas que apresentam maior complexidade econômica.

TABELA 1
Resultados das estimações: variável dependente – índice de complexidade econômica na versão linear

Coeficientes	MQO (1)	MQO (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
Constante	0,379	0,636	0,376	0,228	-1,525
	(0,46)	(0,44)	(0,33)	(0,53)	(6,38)
Micro	0,014	0,015	0,022*	0,027*	0,166
	(0,01)	(0,01)	(0,00)	(0,00)	(0,22)
Pequena	0,006	0,006	0,001	0,005	0,043
	(0,01)	(0,01)	(0,01)	(0,00)	(0,18)

(Continua)

^{15.} Esse é um ponto que merece ser mais estudado em trabalhos futuros sobre o tema, principalmente no que tange à questão da desindustrialização do país.

(Continu	

Coeficientes	MQ0 (1)	MQO (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
Média	0,020** (0,00)	0,020** (0,00)	0,001 (0,00)	0,000 (0,00)	-0,027 (0,13)
Grande	-0,007 (0,00)	-0,007 (0,00)	0,001 (0,00)	0,003 (0,00)	0,016 (0,10)
VA_agro	-0,212*** (0,03)	-0,195*** (0,03)	-0,057** (0,02)	-0,070* (0,03)	0,658 (0,54)
VA_ind	0,019 (0,06)	0,116*** (0,02)	0,007 (0,02)	0,021 (0,02)	-0,651 (0,43)
VA_serv	0,123* (0,06)				
λ					-0,705*** (0,14)
				0,716*** (0,03)	
ρ			0,884*** (0,08)		0,919*** (0,07)
R ²	0,094	0,089	0,485		
AIC	1513,59	1514,84			
SC	1548,22	1545,14			
I de Moran	17,34***	17,63***			
L - Lag	337,61***	344,37***			
ML – Erro	290,29***	300,51***			
ML - Sarma	342,16***	348,11***			
MLR - Lag	51,86***	47,60***			
MLR – Erro	4,54**	3,74**			
Teste Breusch-Pagan	61,75***	61,24***			
Teste Jarque-Bera	401,49***	399,32***			
Diagnóstico multicolinearidade	101,28	41,58			
Teste Anselin-Kelejian			17,99 (0,00)		

Fonte: *Software* GeoDa Space. Elaboração dos autores.

Obs.: 1. Erros-padrão entre parênteses.

2. Significância: *** p < 0,01; ** p < 0,05; * p < 0,1.

TABELA 2 Resultados das estimações: variável dependente – índice de complexidade econômica na versão não linear

Coeficientes	MQ0 (1)	MQO (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
Constante	0,177 (6,26)	-0,194 (5,95)	-1,525 (6,38)	-1,354 (3,14)	0,297 (0,33)
Micro	0,168 (0,21)	0,167 (0,21)	0,022** (0,166)	0,120* (0,08)	0,008 (0,01)
Pequena	0,052 (0,18)	0,051 (0,18)	0,043 (0,18)	0,031 (0,058)	0,001 (0,01)
Média	-0,015 (0,12)	-0,011 (0,12)	-0,027 (0,13)	-0,023 (0,04)	0,006 (0,00)
Grande	0,011 (0,10)	0,011 (0,10)	0,016 (0,10)	0,019 (0,05)	-0,003 (0,00)
VA_agro	0,493 (0,47)	0,469 (0,46)	0,658 (0,54)	0,627 (0,49)	-0,044 (0,02)
VA_ind	-0,338 (0,81)	-0,479 (0,34)	-0,651 (0,43)	-0,635 (0,48)	0,012 (0,02)
VA_serv	-0,177 (0,92)				
λ				-0,201 (0,31)	
					-0,705*** (0,14)
ρ			0,517 (0,76)		0,919*** (0,07)
R ²	0,006	0,006	0,0043	0,031	0,482
AIC	4426,94	4424,98			
SC	4461,56	4455,27			
I de Moran	1,211	1,185			
ML – Lag	0,925	0,901			
ML – Erro	1,139	1,092			
ML - Sarma	3,619	3,143			
MLR – Lag	2,480	2,050			
MLR – Erro	2,694	2,242			(Continua)

(Continuação)

Coeficientes	MQO (1)	MQO (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
Teste Breusch-Pagan	1470,09***	1462,52***			
Teste Jarque-Bera	4488***	4489***			
Diagnóstico multicolinearidade	101,28	41,58			
Teste Anselin-Kelejian			0,863***		

Fonte: *Software* GeoDa Space. Elaboração dos autores.

Obs.: 1. Erros-padrão entre parênteses.

2. Significância: *** p < 0,01; ** p < 0,05; * p < 0,1.

TABELA 3

Resultados das estimações: variável dependente – índice de produtividade associada à cesta de exportações

Coeficientes	MQO (1)	MQ0 (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
Constante	4,103***	3,359***	0,951	3,258***	1,076
	(1,02)	(0,97)	(1,12)	(1,37)	(1,15)
Micro	0,178***	0,177***	0,187***	0,214***	0,166***
	(0,03)	(0,03)	(0,03)	(0,07)	(0,06)
Pequena	-0,010	-0,011	-0,028	-0,014	-0,028
	(0,03)	(0,02)	(0,02)	(0,05)	(0,05)
Média	0,049**	0,052**	0,050***	0,056	0,044
	(0,02)	(0,02)	(0,01)	(0,03)**	(0,02)
Grande	0,064***	0,065***	0,031*	0,038	0,039**
	(0,010)	(0,01)	(0,01)	(0,02)*	(0,02)
VA_agro	0,137*	0,090	0,045	0,083	0,048
	(0,07)	(0,07)	(0,07)	(0,08)	(0,05)
VA_ind	0,331**	0,048	0,028	0,049	0,439
	(0,13)	(0,05)	(0,05)	(0,05)	(0,04)
VA_serv	-0,356** (0,15)				
λ				0,355*** (0,08)	
θ					-0,267 (0,19)

(Continuação)

Coeficientes	MQO (1)	MQO (2)	SAR (GMM)	SEM (GMM)	Sarma (GMM)
ρ			0,420*** (0,11)		0,439 (0,12)
R ²	0,280	0,273	0,332		0,332
AIC	2399,89	2403,46			
SC	2434,51	2433,76			
<i>I</i> de Moran	5,64***	5,82***			
ML – Lag	35,08***	37,05***			
ML – Erro	29,82	31,83***			
ML - Sarma	35,55***	37,62***			
MLR – Lag	35,08**	5,78**			
MLR – Erro	0,46	0,56			
Teste Breusch-Pagan	579,89***	595,65***			
Teste Jarque-Bera	1813,72***	1826,69***			
Diagnóstico multicolinearidade	101,28	41,58	1,192		

Fonte: *Software* GeoDa Space. Elaboração dos autores.

Obs.: 1. Erros-padrão entre parênteses.

2. Significância: *** p < 0,01; ** p < 0,05; * p < 0,1.

Para as estimações com o índice de produtividade associada à cesta de exportações como variável dependente, os resultados indicaram coeficientes com significância estatística para micro, médias e grandes empresas. Todos tiveram sinais positivos, mas foi visto que a relação foi maior quanto menor o porte das empresas. Ou seja, verificou-se que os financiamentos destinados a pequenas empresas apresentam um efeito positivo sobre a produtividade das exportações das microrregiões. Esse efeito é significativamente superior se comparado aos financiamentos para empresas de médio e grande porte.

Isso indica que microrregiões que recebem mais recursos para microempresas tendem a apresentar maior produtividade associada à cesta de exportações. Em outras palavras, tendem a modificar a estrutura produtiva, se aproximando da estrutura de microrregiões com maior renda *per capita*. A defasagem também teve sinal positivo, indicando que microrregiões tendem a se beneficiar da produtividade do comércio externo de microrregiões vizinhas.

De uma maneira geral, os resultados indicaram que o financiamento para microempresas está diretamente relacionado com a complexidade econômica e com a produtividade do comércio externo das microrregiões do Brasil. Como as defasagens foram positivas e estatisticamente significativas, podemos dizer que, além dessa relação positiva, existem efeitos de transbordamento espacial. Tais efeitos atuam de modo que o financiamento para microempresas influencia na complexidade e na produtividade do comércio externo, e isso se espraia para microrregiões vizinhas gerando um efeito cumulativo e benéfico para a modificação da estrutura produtiva dessas microrregiões.

4 CONSIDERAÇÕES FINAIS

O trabalho mostrou como as microrregiões do Brasil e seus respectivos produtos exportados estão ligados por meio de rede. Isso foi importante para destacar o potencial das microrregiões e dos produtos que elas exportam.

Como síntese, os resultados do estudo apontaram para uma forte ligação entre o financiamento de microempresas, a complexidade econômica e a produtividade nas atividades de comércio exterior nas microrregiões do Brasil. Além de demonstrarem essa relação positiva, os achados indicam a existência de efeitos de transbordamento espacial, nos quais o financiamento de microempresas não apenas influencia a complexidade e a produtividade do comércio externo, mas também se propaga para microrregiões vizinhas, gerando um efeito acumulativo e benéfico na transformação da estrutura produtiva local. Ademais, esse é um resultado extremamente relevante. Aqui cabe que se discorra um pouco sobre as políticas de financiamento produtivo e de incentivo à inovação.

Seguindo a linha do que foi defendido por Nogueira e Zucoloto (2019), em primeiro lugar, é preciso discutir a própria ideia do que caracteriza a "inovação", que é, via de regra, subjacente ao debate sobre o tema no Brasil, especialmente no que tange às políticas públicas de apoio e incentivo à inovação. Há, no país, a prevalência de uma noção que entende como inovação apenas as inovações disruptivas e, particularmente, aquelas relacionadas ao desenvolvimento de produtos novos. Entretanto, segundo os próprios manuais para a produção de estatísticas em inovação, tais como o Manual de Frascati (OECD, 2015) e o Manual de Oslo (OECD e Eurostat, 2018) e, em especial, o Manual de Bogotá (Ricyt, OEA e Programa Cyted, 2001), por inovação entendem-se tanto as disruptivas como as incrementais, bem como aquelas relacionadas a produtos e a processos. Assim, as inovações incrementais em processos produtivos e de gestão organizacional devem ser consideradas dentro do escopo do processo inovativo do tecido produtivo do país. Isso significa dizer que iniciativas voltadas para a modernização dos processos

das firmas são também inovações, incluindo aí a aquisição de bens de capital e o aprimoramento dos processos organizacionais.¹⁶

No caso brasileiro, as inovações de processo são, muito provavelmente, ainda mais relevantes que as demais modalidades. Continuando a discussão sobre o debate em relação às inovações no Brasil e sobre os preceitos nele dominantes, é preciso entender que a inovação não é, e não pode ser, uma finalidade em si mesma. O edifício teórico da economia da inovação tem como um de seus principais alicerces o conceito de transbordamento schumpeteriano. Segundo Schumpeter (1982), as inovações disruptivas realizam seu papel de motor do crescimento e do desenvolvimento econômico quando, ao transbordar para o tecido econômico como um todo, engendram um processo de "destruição criativa" que resulta no aumento da produtividade sistêmica da economia. Em outras palavras, as inovações somente trazem um efetivo benefício social quando absorvidas pela estrutura produtiva como um todo. Assim, recursos públicos destinados ao fomento da inovação somente se justificam quando se dá esse transbordamento. Caso contrário, estariam apenas alimentando ganhos privados.

Ocorre que a estrutura produtiva brasileira se caracteriza como um sistema composto por uma enorme massa de pequenos negócios (formais ou informais) de baixíssima produtividade que se integra a um número significativamente mais reduzido de firmas modernas (e inovativas), de alta produtividade – muitas delas dentro dos padrões globais. É essa composição que resulta na baixa produtividade média da economia brasileira. Essa miríade de micro e pequenas empresas apresenta baixos índices de produtividade, principalmente em virtude do reduzidíssimo nível de conteúdo tecnológico de seus processos produtivos e organizacionais. Dessa forma, dado o seu "atraso" em relação ao estado da técnica da produção, são incapazes de absorver as inovações que vão se apresentando. Portanto, o Brasil carece de um "meio ambiente" que, por ser incapaz de absorver os transbordamentos schumpeterianos, é também incapaz de efetivamente produzir um círculo virtuoso de crescimento e modernização.

Resulta disso que o foco dos recursos públicos voltados à inovação no país deveria ser o de criar esse "meio ambiente" capaz de absorver e difundir o progresso técnico por toda a estrutura produtiva, e o caminho para tanto é o apoio e o incentivo – principalmente por meio do financiamento público mais favorecido – às inovações de processos (modernização de processos), em especial das empresas de pequeno porte.

^{16.} Uma inovação de processo é uma nova ou melhorada maneira de realizar funções de negócios que difere significativamente dos processos anteriores da empresa e pode abranger mudanças em equipamentos, recursos humanos, métodos de trabalho ou uma combinação desses elementos (OECD, 2018).

Os resultados deste estudo – que evidenciam o impacto positivo dos financiamentos do BNDES na transformação da estrutura produtiva – não somente corroboram essa linha de argumentação, como apontam para qual deveria ser o direcionamento prioritário desses recursos.

Adicionalmente, o trabalho também permitiu observar que a maior parte dos recursos do BNDES para a indústria de transformação é orientado para regiões Sul e Sudeste e, principalmente, para microrregiões que abrigam os grandes centros comerciais. E são essas as regiões que concentram, independentemente do porte, as empresas que já se encontram em um patamar mais elevado de desenvolvimento produtivo. Essa conjuntura sugere que os negócios mais "maduros" acabam tendo mais acesso aos créditos, justamente os empreendimentos que, no contexto nacional, menos carecem deles. Entretanto, como evidenciam os resultados deste estudo, as estratégias para reduzir a heterogeneidade estrutural deveriam ter foco em investir em locais mais distantes dos grandes centros comerciais e industriais. Na verdade, o que se observa é a ocorrência de mais uma reprodução do fenômeno de endogeneidade das políticas públicas descrito na introdução deste trabalho, que foi designado por *paradoxo de Tostines* (Nogueira *et al.*, 2012).

A fim de aprofundar a observação desse fenômeno, complementando os resultados deste trabalho e contribuindo para o delineamento de políticas públicas mais efetivas, sugere-se que sejam desenvolvidos estudos futuros com o fito de comparar a produtividade marginal dos financiamentos do BNDES, com recorte por porte, para empresas nos grandes centros *vis-a-vis* as das microrregiões mais distantes desses polos industriais. Dado o aqui exposto, há uma expectativa de que os resultados – em termos do aumento da produtividade média – para o agregado da economia por unidade monetária emprestada sejam maiores para as empresas de menor porte, especialmente aquelas das regiões menos desenvolvidas. Sendo isso verdadeiro, ao se direcionar os recursos dos créditos públicos para essas firmas, ter-se-ia um significativo aumento da eficiência e da eficácia do sistema público de financiamento ao desenvolvimento.

REFERÊNCIAS

ACEMOGLU, D.; JOHNSON, S.; ROBINSON, J. A. The colonial origins of comparative development: an empirical investigation. **American Economic Review**, v. 91, n. 5, p. 1369-1401, dez. 2001.

ALMEIDA, E. (Org.). **Econometria espacial aplicada**. Campinas: Ed. Alínea, 2012.

ANSELIN, L.; FLORAX, R.; REY, S. (Ed.). **Advances in spatial econometrics**: methodology, tools and applications. Nova York: Springer Science & Business, 2013.

BALASSA, B. Trade liberalisation and 'revealed' comparative advantage. **The Manchester School**, v. 33, n. 2, p. 99-123, maio 1965.

BOTELHO, M. R. A. *et al.* Evolução da participação das MPEs na estrutura industrial brasileira: uma análise por porte, setor de atividade e idade das empresas nos anos 2000. **Planejamento e Políticas Públicas**, Brasília, n. 64, p. 166-194, out.-dez. 2022. Disponível em: https://www.ipea.gov.br/ppp/index.php/PPP/article/view/1404/671.

BUYUKYAZICI, D. *et al.* Workplace skills as regional capabilities: relatedness, complexity and industrial diversification of regions. **Regional Studies**, v. 58, n. 3, p. 1-21, 2024. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/00343404.2023.2206868.

CALDARELLI, G. *et al.* A network analysis of countries' export flows: firm grounds for the building blocks of the economy. **PLOS ONE**, v. 7, n. 10. p. 1-11, 19 out. 2012. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047278.

CHANG, H.-J. Breaking the mould: an institutionalist political economy alternative to the neo-liberal theory of the market and the state. **Cambridge Journal of Economics**, v. 26, n. 5, p. 539-559, 1° set. 2002.

CRISTELLI, M.; TACCHELLA, A.; PIETRONERO, L. The heterogeneous dynamics of economic complexity. **PLOS ONE**, v. 10, n. 2, p. 1-15, 11 fev. 2015. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117174.

DEVLIN, R.; MOGUILLANSKY, G. What's new in the new industrial policy in Latin America? *In*: STIGLITZ, J. E.; YIFU, J. L. (Ed.). **The industrial policy revolution I**: the role of government beyond ideology. Londres: Palgrave Macmillan, 2013. p. 276-317.

DIAMOND, P. National debt in a Neoclassical growth model. **The American Economic Review**, v. 55, n. 5, p. 1126-1150, dez. 1965.

FELIPE, J. *et al.* Product complexity and economic development. **Structural Change and Economic Dynamics**, v. 23, n. 1, p. 36-68, mar. 2012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0954349X11000567.

FLORAX, R. J. G. M.; FOLMER, H.; REY, S. J. Specification searches in spatial econometrics: the relevance of Hendrys methodology. **Regional Science and Urban Economics**, v. 33, n. 5, p. 557-579, set. 2003.

FURTADO, C. **Desenvolvimento e subdesenvolvimento**. Rio de Janeiro: Ed. Fundo de Cultura, 1961.

GALA, P. **Complexidade econômica**: uma nova perspectiva para entender a antiga questão da riqueza das nações. Rio de Janeiro: Contraponto, 2017.

GALA, P. et al. **Sophisticated jobs matter for economic development**: an empirical analysis based on input-output matrices and economic complexity. São Paulo: FGV-EESP, jan. 2017. (Working Paper, n. 439). Disponível em: https://repositorio.fgv.br/items/007faced-cba4-4c63-a82a-f9b548ef7504.

HARTMANN, D. *et al.* Linking economic complexity, institutions, and income inequality. **World Development**, v. 93, p. 75-93, 2017. Disponível em: https://www.eco.unicamp.br/images/arquivos/Hartmann_WD_May2017.pdf.

HAUSMANN, R. et al. **The atlas of economic complexity**: mapping paths to prosperity. Cambridge, Estados Unidos: The MIT Press, 2013. Disponível em: http://www.jstor.org/stable/j.ctt9qf8jp.

HAUSMANN, R.; HIDALGO, C. A. **Country diversification, product ubiquity, and economic divergence**. Cambridge, Estados Unidos: Harvard Kennedy School, 10 nov. 2010. (HKS Working Paper, n. RWP10-045). Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1724722.

HAUSMANN, R.; HIDALGO, C. A. The network structure of economic output. **Journal of Economic Growth**, v. 16, n. 4, p. 309-342, 1º out. 2011. Disponível em: https://link.springer.com/article/10.1007/s10887-011-9071-4.

HAUSMANN, R.; HWANG, J.; RODRIK, D. What you export matters. **Journal of Economic Growth**, v. 12, p. 1-25, 2007.

HERRERA, W. D. M.; STRAUCH, J. C. M.; BRUNO, M. A. P. Economic complexity of Brazilian states in the period 1997-2017. **Area Development and Policy**, v. 6, n. 1, p. 63-81, 2021. Disponível em: https://www.tandfonline.com/doi/full/10.1080/23792949.2020.1761846.

HIDALGO, C. A.; HAUSMANN, R. The building blocks of economic complexity. **PNAS**, v. 106, n. 26, p. 10570-10575, 30 jun. 2009. Disponível em: https://www.pnas.org/doi/full/10.1073/pnas.0900943106.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Pesquisa Nacional por Amostras de Domicílio Contínua (PNAD Contínua)**. Rio de Janeiro: IBGE, 2023. Disponível em: https://www.ibge.gov.br/.

INFANTE, R.; MUSSI, C.; NOGUEIRA. M. O. (Ed.). **Por um desenvolvimento inclusivo**: o caso do Brasil. Santiago: CEPAL; Brasília: Ipea, 2015.

KRUEGER, A. O. Why trade liberalisation is good for growth. **The Economic Journal**, v. 108, n. 450, p. 1513-1522, set. 1998.

KRUGMAN, P. Increasing returns and economic geography. **Journal of Development Economics**, v. 99, n. 3, p. 483-499, 1991.

KUZNETS, S. Economic growth and income inequality. **The American Economic Review**, v. 45, n. 1, p. 1-28, mar. 1955.

MANKIW, N. G.; ROMER, D.; WEIL, D. N. A contribution to the empirics of economic growth. **Quarterly Journal Of Economics**, v. 2, n. 107, p. 407-437, maio 1992.

MARIANI, M. S. *et al.* Measuring Economic complexity of countries and products: which metric to use? **The European Physical Journal B**, v. 88, 2015. Disponível em: https://link.springer.com/article/10.1140/epjb/e2015-60298-7.

NOGUEIRA, M. O.; ZUCOLOTO, G. F. **Um pirilampo no porão**: um pouco de luz nos dilemas da produtividade das pequenas empresas e da informalidade no país. 2. ed. Brasília: Ipea, 2019.

NOGUEIRA, M. O. *et al.* **Vende mais porque é fresquinho, ou é fresquinho porque vende mais**: uma avaliação de políticas selecionadas de desenvolvimento tecnológico no Brasil. Brasília: Ipea, jan. 2012. (Texto para Discussão, n. 1691). Disponível em: https://repositorio.ipea.gov.br/handle/11058/1019.

NORTH, D. C. (Ed.). Structure and change in economic history. Nova York: Norton, 1981.

OECD – ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. **Frascati manual 2015**: guidelines for collecting and reporting data on research and experimental development. Paris: OECD Publishing, 2015. Acesso em: 27 nov. 2023. Disponível em: https://www.oecd.org/sti/frascati-manual-2015-9789264239012-en.htm.

OECD - ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT; EUROSTAT - EUROPEAN STATISTICS. **Oslo manual 2018**: guidelines for collecting, reporting and using data on innovation Paris: OECD Publishing; Luxemburgo: Eurostat, 2018. Acesso em: 27 nov. 2023. Disponível em: https://www.oecd.org/science/oslo-manual-2018-9789264304604-en.htm.

OPERTI, F. G. *et al.* Dynamics in the fitness-income plane: Brazilian states *vs* world countries. **PLOS ONE**, v. 13, n. 6, 2018. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197616.

PREBISCH, R. O desenvolvimento econômico da América Latina e seus principais problemas. **Revista Brasileira de Economia**, v. 3, n. 3, p. 47-111, 1949.

RICYT – RED IBEROAMERICANA DE INDICADORES DE CIENCIA Y TECNOLOGIA; OEA – ORGANIZACIÓN DE ESTADOS AMERICANOS; PROGRAMA CYTED – PROGRAMA IBEROAMERICANO DE CIENCIA Y TECNOLOGÍA PARA EL DESARROLLO. **Manual de Bogotá**: normalización de indicadores de innovación tecnológica en América Latina y el Caribe. Bogotá: OCYT, mar. 2001.

RODRIK, D. **Industrial policy for the twenty-first century**. Cambridge, Estados Unidos: Harvard University, 2004.

RODRIK, D. Políticas de diversificação. Revista CEPAL, n. Especial, p. 27-43, maio 2010.

ROWTHORN, R.; RAMASWANY, R. Growth, trade and deindustrialization. **IMF Staff Papers**, v. 46, n. 1, p. 18-41, mar. 1999.

SACHS, J. D. Institutions matter, but not for everything. **Finance and Development**, v. 40, n. 2. p. 38-41, jun. 2003.

SCHUMPETER, J. A. **A teoria do desenvolvimento econômico**. São Paulo: Abril Cultural, 1982. (Coleção Os Economistas).

SOLOW, R. M. A contribution to the theory of economic growth. **The Quarterly Journal of Economics**, v. 70, n. 1, p. 65-94, fev. 1956. Disponível em: https://www.jstor.org/stable/1884513.

SOROS, G. Open society: reforming global capitalism. Nova York: PublicAffairs, 1º jan. 2000.

STIGLITZ, J. E. Formal and informal institutions. *In*: DASGUPTA, P.; SERAGELDIN, I. (Ed.). **Social capital**: a multifaceted perspective. Wahsington: The World Bank, 2000. p. 59-68.

TACCHELLA, A. et al. A new metrics for countries' fitness and products' complexity. **Scientific Reports**, v. 2, 2012. Disponível em: https://www.nature.com/articles/srep00723.

TACCHELLA, A. et al. Economic complexity: conceptual grounding of a new metrics for global competitiveness. **Journal of Economic Dynamics and Control**, v. 37, n. 8, p. 1683-1691, ago. 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S0165188913000833.

TEIXEIRA, F. O.; MÍSSIO, F.; DATHEIN, R. Economic complexity, structural transformation and economic growth in a regional context: evidence for Brazil. **PSL Quarterly Review**, v. 75, n. 300, 2022. Acesso em: 21 nov. Disponível em: https://rosa.uniroma1.it/rosa04/psl_quarterly_review/article/view/17505.

THIRLWALL, A. P. The balance of payments constraint as an explanation of international growth rate differences. **Quarterly Review**, v. 32, n. 128, 1979.

VERHEIJ, T.; OLIVEIRA, H. Is economic complexity spatially dependent? A spatial analysis of interactions of economic complexity between municipalities in Brazil. **Revista Brasileira de Gestão e Desenvolvimento Regional**, v. 16, n. 1, p. 318-338, abr. 2020.

APÊNDICE A

TABELA A.1 Índices de produtividade do comércio externo e de complexidade econômica das microrregiões do Brasil

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Porto Velho	23693.29	0.016404	-0.08356
Guajará-Mirim	25005.12	1.328139	0.777599
Ariquemes	19714.5	0.034995	-0.0254
Ji-Paraná	22005.13	6.11E-05	-0.96595
Alvorada D'Oeste	22562.22	2.76E-05	-2.42158
Cacoal	22706.26	1.25E-07	-1.83155
Vilhena	23760.3	1.44E-05	-1.79945
Colorado do Oeste	26026.75	1.13E-07	-1.57833
Cruzeiro do Sul	15173.39	4.74E-06	-0.16451
Tarauacá	0	#N/D	0
Sena Madureira	19410.5	2.14E-08	-1.10411
Rio Branco	20578.86	4.44E-05	-0.29079
Brasiléia	22140.49	0.380308	0.790628
Rio Negro	11556.39	1.28E-07	0.007715
Japurá	0	#N/D	0
Alto Solimões	18960.92	2.21E-05	0.321536
Juruá	0	#N/D	0
Tefé	14959.24	1.02E-06	0.494595
Coari	19634.86	9.63E-07	0.706091
Manaus	29518.53	13.82872	1.036549
Rio Preto da Eva	19381.81	4.93E-05	-0.27409
Itacoatiara	21029.98	0.013095	0.217628
Parintins	14667.27	5.13E-06	-0.27876
Boca do Acre	16014.31	8.08E-07	-0.04184
Purus	14364.48	6.62E-09	-1.20554
Madeira	14658.7	7.1E-07	-0.71218
Boa Vista	24303.67	0.061772	0.376588
Nordeste de Roraima	15731.78	0.000174	0.128953
Caracaraí	21722.31	1.19E-07	-0.36729
Sudeste de Roraima	14885.16	2.44E-05	-0.14359
Óbidos	18253.83	4.57E-06	-0.33032

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Santarém	22806.91	0.0041	-0.06431
Almeirim	21796.5	0.000109	-0.71809
Portel	14717.62	4.72E-07	-0.42766
Furos de Breves	14446.77	7.88E-07	-0.64784
Arari	9848.203	1.56E-05	0.082872
Belém	19272.94	0.035783	0.105914
Castanhal	13823.31	0.002297	-0.58827
Salgado	14354.35	0.011451	1.011924
Bragantina	13803.99	0.001462	0.254644
Cametá	10211.94	0.000209	0.302011
Tomé-Açu	10767.77	0.000954	-0.18973
Guamá	17967.95	0.001684	0.01961
Itaituba	18430.97	2.52E-07	-1.92084
Altamira	19536.39	0.005483	0.246628
Tucuruí	18364.3	0.005551	0.252909
Paragominas	23502.63	1.1E-07	-1.53065
São Félix do Xingu	23311.66	2.64E-05	-1.32492
Parauapebas	31029.18	2.27E-09	-1.98269
Marabá	18493.04	6.56E-09	-2.52903
Redenção	22825.93	1.09E-05	-1.53618
Conceição do Araguaia	23122.76	2.14E-07	-1.73365
Oiapoque	16237.92	0.000353	0.522264
Amapá	15363.25	0.003221	0.792779
Macapá	23476.71	0.001649	0.136801
Mazagão	26070.61	5.03E-08	-0.18637
Bico do Papagaio	25983.84	8.41E-07	-0.11913
Araguaína	23195.31	0.00059	-1.00651
Miracema do Tocantins	25600.43	2.71E-09	-1.91025
Rio Formoso	22753.23	4.98E-08	-2.39832
Gurupi	24729.39	4.55E-07	-2.23923
Porto Nacional	26135.97	8.75E-06	-0.85974
Jalapão	25859.96	3.09E-08	-1.30019
Dianópolis	26010.28	1.39E-08	-2.05722
Litoral Ocidental Maranhense	0	#N/D	0

(Continuação)

(Continuação)			
Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Aglomeração Urbana de São Luís	23307.94	0.023598	0.44673
Rosário	16185.05	8.21E-10	-0.77575
Lençóis Maranhenses	11145.51	4.17E-05	0.246542
Baixada Maranhense	22056.53	4.01E-08	-1.81527
Itapecuru Mirim	10315.01	1.3E-09	-1.20296
Gurupi	16170.37	3.24E-11	-2.19072
Pindaré	19320.99	8.47E-07	-1.13557
Imperatriz	24180.13	1.91E-05	-0.38314
Médio Mearim	15186	0.006282	1.096367
Alto Mearim e Grajaú	6662.914	4.83E-05	0.72272
Presidente Dutra	0	#N/D	0
Baixo Parnaíba Maranhense	26190.93	1.56E-08	-1.38985
Chapadinha	25854.12	1.34E-11	-2.83484
Codó	11091.87	0.000298	1.055209
Coelho Neto	23552.85	4.81E-09	-1.10293
Caxias	22637.45	7.51E-09	-2.07546
Chapadas do Alto Itapecuru	25502.69	1.18E-08	-0.80513
Porto Franco	26228.24	4.77E-07	-1.71991
Gerais de Balsas	25776.02	1.41E-11	-3.45712
Chapadas das Mangabeiras	25660.13	1.81E-12	-2.75505
Baixo Parnaíba Piauiense	8804.966	7.69E-07	0.783893
Litoral Piauiense	10045.28	0.000319	0.481547
Teresina	17552.14	0.008647	0.517771
Campo Maior	8775.464	0.000129	0.375306
Médio Parnaíba Piauiense	0	#N/D	0
Valença do Piauí	0	#N/D	0
Alto Parnaíba Piauiense	26226.51	1.99E-09	-2.37192
Bertolínia	23412.79	6.29E-13	-4.70168
Floriano	21876.16	0.004435	1.120857
Alto Médio Gurguéia	25941.07	2.78E-09	-3.19317
São Raimundo Nonato	11027.04	3.64E-07	0.254136

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Chapadas do Extremo Sul Piauiense	25429.44	2.44E-12	-3.72837
Picos	10305.32	2.25E-07	0.232172
Pio IX	9754.698	5.77E-09	-0.03344
Alto Médio Canindé	12353.13	0.000356	0.583122
Litoral de Camocim e Acaraú	11979.39	0.000121	0.527562
Ibiapaba	16741.99	5.72E-05	0.368119
Coreaú	8005.368	3.67E-07	0.570501
Meruoca	0	#N/D	0
Sobral	12962.37	0.01161	0.695876
lpu	0	#N/D	0
Santa Quitéria	12096.47	1E-07	0.211455
Itapipoca	15552.04	0.000171	0.599518
Baixo Curu	27552.6	0.01064	0.719341
Uruburetama	13736.45	0.000147	0.603088
Médio Curu	12550.94	4.29E-07	0.737078
Canindé	13161.93	0.046345	0.979573
Baturité	9172.243	5.53E-05	0.435845
Chorozinho	11402.95	3.08E-09	-0.68565
Cascavel	20629.92	5.46E-05	0.112804
Fortaleza	22461.07	0.1449	0.726996
Pacajus	15544.11	0.02225	0.94417
Sertão de Cratéus	32265.08	1.12E-11	0.112307
Sertão de Quixeramobim	14919.4	0.042302	0.708783
Sertão de Inhamuns	0	#N/D	0
Sertão de Senador Pompeu	11667.16	5.26E-06	0.655467
Litoral de Aracati	13647.31	2.75E-06	0.180511
Baixo Jaguaribe	12840.73	0.000324	0.436773
Médio Jaguaribe	20889.99	0.00021	0.799455
Serra do Pereiro	9661.726	2.45E-07	0.538345
Iguatu	11925.45	0.001475	0.625128
Várzea Alegre	11200.44	0.000129	0.17632
Lavras da Mangabeira	0	#N/D	0
Chapada do Araripe	0	#N/D	0

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Caririaçu	0	#N/D	0
Barro	0	#N/D	0
Cariri	12102.77	0.005694	0.631933
Brejo Santo	11808.89	3.22E-07	0.694963
Mossoró	14412.5	0.000442	0.489152
Chapada do Apodi	13010.65	5.77E-09	-0.16619
Médio Oeste	13085.85	3.81E-09	-0.21242
Vale do Açu	16062.39	3.49E-06	0.213108
Serra de São Miguel	0	#N/D	0
Pau dos Ferros	0	#N/D	0
Umarizal	0	#N/D	0
Macau	24107.38	3.05E-05	0.484982
Angicos	12542.09	2.61E-08	-0.18755
Serra de Santana	10647.68	5.17E-07	0.635844
Seridó Ocidental	13619.1	0.001181	0.730593
Seridó Oriental	19088.59	0.00055	-0.00315
Baixa Verde	13617.13	0.000118	0.835667
Borborema Potiguar	8858.093	1.41E-07	0.471748
Agreste Potiguar	10040.26	1.82E-07	0.284766
Litoral Nordeste	18921.22	0.001307	0.514425
Macaíba	19304.21	0.01987	0.794946
Natal	30408.57	0.015584	0.659378
Litoral Sul	20429.76	4.48E-05	0.382469
Catolé do Rocha	11265.03	0.010051	0.842558
Cajazeiras	10337.27	6.86E-09	-0.33623
Sousa	9885.585	1.66E-08	0.266807
Patos	12147.31	4.07E-08	-0.00315
Piancó	0	#N/D	0
Itaporanga	0	#N/D	0
Serra do Teixeira	7476.496	3.57E-09	0.643555
Seridó Ocidental Paraibano	10911.81	2.37E-06	0.437527
Seridó Oriental Paraibano	7910.141	2.56E-05	-0.05621
Cariri Ocidental	0	#N/D	0
Cariri Oriental	0	#N/D	0
Curimataú Ocidental	7523.183	4.27E-12	0.086109

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Curimataú Oriental	9854.205	2.49E-11	0.029889
Esperança	23412.79	6.29E-13	-4.70168
Brejo Paraibano	0	#N/D	0
Guarabira	27868.53	3.41E-09	-0.07778
Campina Grande	13340.03	0.016476	0.813818
Itabaiana	8361.205	7.53E-09	0.852629
Umbuzeiro	0	#N/D	0
Litoral Norte	15572.64	9.29E-07	-0.36651
Sapé	14466.63	4.12E-07	0.442432
João Pessoa	20076.86	0.230492	0.759902
Litoral Sul	22013.39	0.000959	0.21045
Araripina	10965.08	0.000442	0.680311
Salgueiro	0	#N/D	0
Pajeú	22647.2	9.11E-06	-0.00281
Sertão do Moxotó	13192.61	2.06E-06	0.343302
Petrolina	15113.66	0.000167	-0.04382
Itaparica	12179.91	2.05E-05	0.267282
Vale do Ipanema	8292.504	8.52E-07	-0.12348
Vale do Ipojuca	15966.47	0.00285	0.670403
Alto Capibaribe	18070.94	0.000989	0.908558
Médio Capibaribe	10982.43	1.65E-06	0.578876
Garanhuns	21534.53	7.33E-06	0.229024
Brejo Pernambucano	10784.79	9.94E-08	0.609467
Mata Setentrional Pernambucana	28042.8	0.003721	0.707104
Vitória de Santo Antão	20616.59	0.002814	0.529431
Mata Meridional Pernambucana	23799.95	7.76E-07	-0.33346
Itamaracá	23406.15	0.012622	0.833296
Recife	28892.42	1.231611	0.881695
Suape	41697.21	0.184946	0.970775
Fernando de Noronha	0	#N/D	0
Serrana do Sertão Alagoano	0	#N/D	0
Alagoana do Sertão do São Francisco	8798.603	1.3E-08	1.384084
Santana do Ipanema	0	#N/D	0

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Batalha	0	#N/D	0
Palmeira dos Índios	14952.02	1.72E-06	0.297748
Arapiraca	25549.38	3.68E-05	0.530029
Traipu	0	#N/D	0
Serrana dos Quilombos	23157.59	7.02E-08	-0.70487
Mata Alagoana	23579.79	1.23E-07	0.048115
Litoral Norte Alagoano	14245.93	0.000144	0.995331
Maceió	23343.22	0.015846	0.460949
São Miguel dos Campos	23750.3	4.68E-06	-0.03024
Penedo	23693.65	1.43E-06	0.670033
Sergipana do Sertão do São Francisco	0	#N/D	0
Carira	12753.62	6.95E-05	0.829467
Nossa Senhora das Dores	0	#N/D	0
Agreste de Itabaiana	20163.98	8.81E-08	-0.52431
Tobias Barreto	12903.15	0.008082	0.982995
Agreste de Lagarto	16435.07	1.26E-06	0.564538
Propriá	11197.45	4.37E-05	0.927465
Cotinguiba	0	#N/D	0
Japaratuba	22640.7	0.042243	1.270902
Baixo Cotinguiba	21275.75	0.002453	0.858185
Aracaju	21760.66	0.127097	0.97867
Boquim	17228.46	1.46E-05	0.717729
Estância	17748.22	0.002447	0.646419
Barreiras	25777.03	1.72E-06	-1.469
Cotegipe	16110.74	8.84E-06	1.026191
Santa Maria da Vitória	24895.12	1.48E-07	-1.83444
Juazeiro	13615.68	7.59E-05	-0.03179
Paulo Afonso	17443.15	6.67E-06	0.017052
Barra	9174.984	8.78E-10	0.002831
Bom Jesus da Lapa	13291.42	3.7E-07	0.456382
Senhor do Bonfim	18228.32	0.000473	-0.2128
Irecê	19113.14	7.15E-07	-0.78
Jacobina	16189.36	5.73E-11	-1.08042

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Itaberaba	13027.06	0.000301	0.525937
Feira de Santana	25807.96	0.098566	0.856978
Jeremoabo	7523.183	4.27E-12	0.086109
Euclides da Cunha	8478.573	2.12E-07	-0.22
Ribeira do Pombal	16731.77	3.96E-07	0.119015
Serrinha	13360.63	0.027943	0.688613
Alagoinhas	17656.87	0.000379	0.31069
Entre Rios	16974.63	7.79E-05	0.005605
Catu	23798.26	0.024131	0.826037
Santo Antônio de Jesus	21525	0.003183	0.590556
Salvador	34883.34	7.85046	0.946464
Boquira	9143.643	8.54E-09	0.027691
Seabra	17822.51	7.22E-06	-0.04495
Jequié	12306.75	0.000107	0.484899
Livramento do Brumado	11840.37	1.42E-07	0.011085
Guanambi	32045.63	0.001251	0.938029
Brumado	10478.48	4.33E-05	0.321244
Vitória da Conquista	16793.69	0.000592	0.420876
Itapetinga	15763.29	0.000166	-0.20238
Valença	14771.86	4.6E-05	0.021544
Ilhéus-Itabuna	12787.51	0.041488	0.649145
Porto Seguro	30257.6	5.53E-05	0.118422
Unaí	25603.04	2.24E-09	-2.80331
Paracatu	17340.88	0.003602	-0.3013
Januária	12306.32	1.21E-08	0.237624
Janaúba	19069.01	6.2E-07	-1.77361
Salinas	15189.65	0.000362	0.445335
Pirapora	20521.01	0.010303	0.509112
Montes Claros	22892.19	0.016241	0.871066
Grão Mogol	14611.93	1.51E-07	-0.51535
Bocaiúva	25006.18	0.003172	0.843593
Diamantina	11534.23	0.00034	0.314324
Capelinha	17427.07	4.77E-07	-0.68964
Araçuaí	10911.71	1.64E-05	0.108158
Pedra Azul	11708.45	7.07E-09	-0.03244

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Almenara	12672.58	1.68E-09	-0.10004
Teófilo Otoni	16117.16	0.002735	-0.29383
Nanuque	23093.03	4.63E-09	-2.80109
Ituiutaba	23545.76	2.81E-07	-1.44342
Uberlândia	24725.34	0.027664	-0.09714
Patrocínio	18588.18	3.86E-07	-1.56938
Patos de Minas	19293.86	0.000613	-0.40106
Frutal	23697.29	1.76E-07	-1.55286
Uberaba	24097.6	0.054963	0.562337
Araxá	24554.33	0.000316	-0.06626
Três Marias	27072.01	0.005236	-1.07719
Curvelo	16145.84	0.002897	0.233455
Bom Despacho	20722.87	0.002306	0.491683
Sete Lagoas	22474.78	0.049547	0.831665
Conceição do Mato Dentro	32265.08	1.12E-11	0.112307
Pará de Minas	17048.55	0.01264	0.901036
Belo Horizonte	29609.06	3.963002	0.976102
Itabira	31813.99	0.0119	0.680263
Itaguara	44053.25	0.000492	1.057122
Ouro Preto	31972.37	1.92E-08	-0.0795
Conselheiro Lafaiete	29265.21	0.014185	0.871718
Guanhães	9886.243	3.65E-10	-0.65878
Peçanha	9776.104	4.08E-07	0.081213
Governador Valadares	15419.17	0.014799	0.430387
Mantena	27488.13	5.69E-06	0.621746
Ipatinga	31174.46	0.079467	0.946493
Caratinga	17685.68	8.1E-07	0.398042
Aimorés	12045.28	0.000391	0.520718
Piuí	18563.01	1.99E-05	0.295966
Divinópolis	22137	0.103635	0.738856
Formiga	15526.84	0.009141	0.482391
Campo Belo	17658.09	2.64E-05	-0.30265
Oliveira	18673.83	0.001536	0.44116
Passos	24017.03	4.67E-05	0.317609
São Sebastião do Paraíso	17863.53	0.000132	0.712497

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Alfenas	18141.72	0.000159	0.422538
Varginha	18114.51	0.070645	0.898745
Poços de Caldas	19381.66	0.132981	0.947987
Pouso Alegre	31820.84	0.965866	0.90334
Santa Rita do Sapucaí	25895.9	0.450573	1.163178
São Lourenço	19095.98	0.001977	0.449618
Andrelândia	16991.84	1.62E-06	0.056435
Itajubá	30128.29	0.448546	1.022621
Lavras	26725.97	0.001131	0.739775
São João Del Rei	18596.99	0.054166	0.469832
Barbacena	22015.92	0.003812	0.55034
Ponte Nova	26435.81	0.002318	0.434669
Manhuaçu	17419.17	3.76E-07	0.092658
Viçosa	16896.81	0.019177	0.792185
Muriaé	17474.02	2.86E-05	0.6511
Ubá	26443	0.000722	0.441351
Juiz de Fora	27035.39	0.090881	0.777189
Cataguases	20414.58	0.009281	0.996087
Barra de São Francisco	26978.25	3.79E-06	0.265219
Nova Venécia	20282.08	4.93E-07	-0.00402
Colatina	19268.9	9.45E-05	-0.37824
Montanha	17580.93	0.000315	0.249093
São Mateus	13077.28	0.000126	0.264174
Linhares	28391.31	0.002431	0.115752
Afonso Cláudio	18640.88	0.000231	0.555834
Santa Teresa	17342.2	1.44E-06	0.118365
Vitória	33387.83	0.563542	0.741774
Guarapari	32236.74	1.41E-05	0.329622
Alegre	17492.46	5.45E-08	-0.15992
Cachoeiro de Itapemirim	27908.92	0.000586	0.402797
Itapemirim	42606.72	0.000317	0.313017
Itaperuna	18903.36	0.001166	0.779215
Santo Antônio de Pádua	20962.44	0.000252	0.616576
Campos dos Goytacazes	49772.29	0.021641	1.056817

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Macaé	51440.32	0.104609	1.1942
Três Rios	30613.13	0.111272	0.967072
Cantagalo-Cordeiro	22409.53	0.00309	0.946093
Nova Friburgo	21870.93	0.169569	0.945575
Santa Maria Madalena	16300.89	9.55E-07	0.779652
Bacia de São João	48829.6	0.074582	1.102837
Lagos	48896.72	0.080141	1.028301
Vale do Paraíba Fluminense	33798.94	1.483335	1.072739
Barra do Piraí	28916.09	0.014382	0.921371
Baía da Ilha Grande	51770.81	4.02E-05	1.003993
Vassouras	21034.47	0.015086	0.865527
Serrana	25808.41	0.205983	1.065544
Macacu-Caceribu	20233.79	0.087455	0.860778
Itaguaí	33260.42	0.028577	0.941311
Rio de Janeiro	42983.29	38.26999	1.024146
Jales	22427.44	0.000114	-0.38561
Fernandópolis	23485.45	1.22E-05	-1.29625
Votuporanga	25132.13	0.00056	0.383696
São José do Rio Preto	23744.85	0.070533	0.391572
Catanduva	22463.55	0.016934	0.49795
Auriflama	22738.88	0.007155	0.620083
Nhandeara	23422.41	0.001144	0.116599
Novo Horizonte	21063.88	0.004282	0.357445
Barretos	22998.33	2.59E-05	-0.87306
São Joaquim da Barra	24616.5	0.005331	0.108942
Ituverava	23006.07	0.008752	0.756721
Franca	18014.7	0.052972	0.72914
Jaboticabal	20973.19	0.008883	0.441023
Ribeirão Preto	26935.67	0.302424	0.621166
Batatais	24555.43	0.029407	0.477146
Andradina	25055.4	0.000562	-0.67102
Araçatuba	25435.04	0.060444	0.339953
Birigui	23511.75	0.413261	0.838169
Lins	24681.92	0.001701	-0.39578
Bauru	25284.95	0.228915	0.632095
Jaú	28471.25	0.037976	0.499655

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Avaré	22045.15	0.001426	0.265476
Botucatu	29644.78	0.111622	0.739011
Araraquara	19265.7	0.093041	0.767426
São Carlos	33244.59	0.668411	1.027889
Rio Claro	31185.3	1.445413	0.877674
Limeira	27299.68	0.471141	0.787459
Piracicaba	34853.3	0.452635	0.893036
Pirassununga	25374.15	0.021244	0.770672
São João da Boa Vista	20700.66	0.101306	0.778083
Mogi Mirim	30335.47	0.899506	0.82326
Campinas	33702.59	60.26875	1.04814
Amparo	25419.87	0.026868	0.69525
Dracena	23392.31	0.001856	0.064831
Adamantina	25994.06	0.094551	0.635601
Presidente Prudente	23821.38	0.011858	0.027406
Tupã	24188.73	0.037133	0.007329
Marília	28243.66	0.162524	0.933113
Assis	22045.36	0.002485	-0.01134
Ourinhos	22379.54	0.01981	0.384302
Itapeva	22859.62	0.001825	-0.24426
Itapetininga	25205.01	0.010169	0.636336
Tatuí	28852.85	0.562036	1.009655
Capão Bonito	20866.69	0.004987	0.534754
Piedade	22430.63	0.041539	0.447884
Sorocaba	29771.99	7.710958	1.027875
Jundiaí	32145.46	4.260487	0.978574
Bragança Paulista	30091.27	1.389126	0.981084
Campos do Jordão	20125.69	0.014681	0.879331
São José dos Campos	27632.87	4.322224	1.166168
Guaratinguetá	28301.8	0.732998	1.065856
Bananal	13971.4	1.96E-06	0.242424
Paraibuna/Paraitinga	20562.59	0.074669	1.076743
Caraguatatuba	50140.17	0.000785	0.49183
Registro	27458.03	0.010374	0.624338
Itanhaém	21194.24	0.034045	0.69556
Osasco	31246.55	14.57958	0.99934

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Franco da Rocha	20309.73	0.211455	0.934764
Guarulhos	33234.46	5.581987	1.079458
Itapecerica da Serra	27072.33	6.172067	0.976643
São Paulo	29414.13	280.4075	0.952472
Mogi das Cruzes	31898.2	3.64316	0.966624
Santos	28851.86	3.264275	0.52497
Paranavaí	21131	0.010043	0.291825
Umuarama	24385.68	0.008843	-0.16715
Cianorte	24175.21	0.016728	0.513931
Goioerê	24363.22	2.23E-07	-1.17025
Campo Mourão	27337	0.013535	0.072518
Astorga	25145.66	0.001244	0.177366
Porecatu	26143.52	2.76E-05	-0.79071
Floraí	26037.61	1.63E-05	-1.07219
Maringá	25793.8	0.022543	0.168122
Apucarana	22914.68	0.06243	0.539335
Londrina	25300.19	0.903874	0.403775
Faxinal	24682.63	7.91E-06	-0.16517
Ivaiporã	22345.92	6.27E-06	-0.3718
Assaí	20950.36	0.000535	-0.05189
Cornélio Procópio	26348.92	0.030894	0.002401
Jacarezinho	26659.66	0.012731	0.129044
lbaiti	22165.73	0.000122	-0.06348
Wenceslau Braz	27543.59	0.004829	0.853134
Telêmaco Borba	27212.49	0.008034	-0.05134
Jaguariaíva	21097.87	0.004103	-0.09717
Ponta Grossa	28180.07	0.087123	0.146839
Toledo	27598.48	0.035095	0.387421
Cascavel	27923.92	0.008002	0.211142
Foz do Iguaçu	27629.29	2.655456	0.829649
Capanema	26838.29	0.002075	0.009579
Francisco Beltrão	24426.45	0.006076	0.370047
Pato Branco	27585.58	0.005594	0.260706
Pitanga	24269.29	1.73E-05	-0.05569
Guarapuava	26628.74	0.029379	-0.30633
Palmas	22820.07	0.000192	-0.83353

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Prudentópolis	20892.55	0.000126	-0.39912
Irati	24963.82	0.025298	0.404659
União da Vitória	21029.04	0.001487	-0.09282
São Mateus do Sul	26482.42	0.002532	0.492599
Cerro Azul	19626.33	8.8E-07	0.45728
Lapa	27991.61	2.51E-05	-0.33609
Curitiba	31442.88	2.775388	0.881728
Paranaguá	27083.91	0.0053	-0.12849
Rio Negro	25662.59	0.004462	0.366549
São Miguel do Oeste	27082.59	0.004696	0.037262
Chapecó	27046.12	0.069948	0.673792
Xanxerê	27302.33	0.004784	-0.00029
Joaçaba	24586.73	0.013029	0.254108
Concórdia	26196.21	0.000427	-0.53922
Canoinhas	24388.47	0.012871	0.078519
São Bento do Sul	22339.16	0.05193	0.712532
Joinville	32682.49	1.452736	0.942067
Curitibanos	22237.57	0.010922	0.138097
Campos de Lages	26318.26	0.024408	0.349651
Rio do Sul	26622.07	0.029531	0.4472
Blumenau	27431.5	1.337675	0.880878
Itajaí	27915.95	0.11342	0.371937
Ituporanga	25577.5	0.006506	0.785759
Tijucas	24304.97	0.104129	0.876769
Florianópolis	28731.78	0.926906	0.81465
Tabuleiro	14410.71	0.001696	0.446338
Tubarão	25719.78	0.245385	0.561307
Criciúma	27953.23	1.16346	0.825292
Araranguá	24695.43	0.000734	0.458758
Santa Rosa	28607.89	0.001215	-0.0199
Três Passos	30115.78	0.004324	0.736896
Frederico Westphalen	25511.3	0.000298	-0.09616
Erechim	27800.83	0.032813	0.552577
Sananduva	23930.29	8.94E-06	0.388091
Cerro Largo	26773.83	0.001719	-0.17678
Santo Ângelo	27018.94	0.00055	-0.61888

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (<i>eigenvalue</i>)
ljuí	27635.57	0.014613	0.647794
Carazinho	29068.83	0.001703	0.151042
Passo Fundo	26588.82	0.027231	0.280552
Cruz Alta	25862.65	0.000108	-0.34498
Não-Me-Toque	32424.96	0.012046	0.70933
Soledade	16892.22	0.025627	0.567834
Guaporé	28848.52	0.044551	0.726046
Vacaria	26634.17	0.031055	0.311962
Caxias do Sul	31448.25	2.66004	0.89947
Santiago	26628.29	1.09E-05	-0.99453
Santa Maria	25347.91	0.016249	0.065483
Restinga Seca	23906.19	0.000152	0.250162
Santa Cruz do Sul	26189.5	0.056978	0.744897
Lajeado-Estrela	23433.21	0.124701	0.30735
Cachoeira do Sul	27945.83	0.004496	0.27749
Montenegro	27690.83	0.183872	0.529318
Gramado-Canela	17822.41	0.816119	0.810962
São Jerônimo	51934.26	0.351764	1.112689
Porto Alegre	27953.74	33.72404	0.791362
Osório	20821.59	0.056461	0.545916
Camaquã	23089.16	0.011318	0.052989
Campanha Ocidental	21975.79	0.045058	0.299369
Campanha Central	22095.98	0.04761	0.335068
Campanha Meridional	27453.42	0.011284	-0.2738
Serras de Sudeste	19520.44	0.003027	0.347082
Pelotas	19779.08	0.028373	0.175957
Jaguarão	22627.73	0.05146	0.579075
Litoral Lagunar	27234.77	0.147345	0.295205
Lagoa Mirim	0	#N/D	0
Lagoa dos Patos	0	#N/D	0
Baixo Pantanal	27987.66	0.837477	0.740209
Aquidauana	23012.19	8.52E-07	-1.73552
Alto Taquari	26896.19	2.75E-07	-1.97646
Campo Grande	24675.41	0.026805	-0.10088
Cassilândia	25464.87	1.07E-07	-2.54018
Paranaíba	23109.37	0.093781	0.35903

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Três Lagoas	30125.66	0.023078	0.658741
Nova Andradina	23079.03	0.001192	-0.55607
Bodoquena	20450.13	3.56E-06	-0.49125
Dourados	26511.15	0.530375	0.67353
Iguatemi	24562.35	0.000154	-0.80654
Aripuanã	22158.47	3.73E-07	-1.92255
Alta Floresta	19219.08	4E-07	-1.6729
Colíder	25306.72	8.33E-05	-1.81966
Parecis	26458.78	2.14E-06	-2.08996
Arinos	25609.86	2.38E-07	-2.13129
Alto Teles Pires	27665.68	2.08E-06	-1.53945
Sinop	26988.77	4.1E-07	-1.99
Paranatinga	24027.21	1.53E-08	-2.65189
Norte Araguaia	26995.64	5.7E-09	-2.50144
Canarana	26433.05	3.78E-09	-2.17599
Médio Araguaia	24087.64	1.85E-06	-1.88557
Alto Guaporé	18486.09	4.66E-09	-2.69936
Tangará da Serra	25250.58	1.27E-08	-2.62046
Jauru	21969.72	1.22E-07	-2.3413
Alto Paraguai	25621.24	2.6E-10	-2.93286
Rosário Oeste	18830.78	6.28E-06	-0.27266
Cuiabá	25546.37	0.001059	-1.12008
Alto Pantanal	16557.94	0.003397	-0.24687
Primavera do Leste	27323.27	2.67E-06	-1.8727
Tesouro	24369.39	1.02E-07	-2.43378
Rondonópolis	27516.67	2.72E-05	-1.63891
Alto Araguaia	28462.61	4.98E-07	-2.13392
São Miguel do Araguaia	21169.76	3.1E-08	-2.27927
Rio Vermelho	20931.53	4.88E-05	-0.99516
Aragarças	16232.58	8.69E-06	0.805109
Porangatu	20381.99	4.26E-07	-3.29537
Chapada dos Veadeiros	16355.44	2.81E-06	0.176978
Ceres	22726.5	4.9E-08	-1.11181
Anápolis	28185.55	0.104452	0.256362
lporá	16734.62	6.15E-08	-1.61811

(Continuação)

Microrregião	Produtividade do comércio externo EXPY	Complexidade econômica (fitness)	Complexidade econômica (eigenvalue)
Anicuns	19905.75	0.000298	-0.58653
Goiânia	22730.83	0.031053	0.193777
Vão do Paranã	27067.97	5.57E-08	-2.45747
Entorno de Brasília	26812.57	0.00066	-0.83917
Sudoeste de Goiás	26832.66	0.000129	-1.39969
Vale do Rio dos Bois	23530.18	0.000328	-1.29181
Meia Ponte	25329.19	0.000885	-0.40764
Pires do Rio	26533.38	9.01E-06	-1.53084
Catalão	25755.86	0.000338	-0.2345
Quirinópolis	25484.97	1.55E-06	-1.42674
Brasília	28692.11	0.375367	0.585746

Fontes: Comex Stat. Disponível em: http://comexstat.mdic.gov.br/en/home. Acesso em: 16 nov. 2023 e IBGE (2022).

Elaboração dos autores.

Ipea - Instituto de Pesquisa Econômica Aplicada

EDITORIAL

Coordenação

Aeromilson Trajano de Mesquita

Assistentes da Coordenação

Rafael Augusto Ferreira Cardoso Samuel Elias de Souza

Supervisão

Ana Clara Escórcio Xavier Everson da Silva Moura

Revisão

Alice Souza Lopes
Amanda Ramos Marques Honorio
Barbara de Castro
Cayo César Freire Feliciano
Cláudio Passos de Oliveira
Clícia Silveira Rodrigues
Denise Pimenta de Oliveira
Nayane Santos Rodrigues
Olavo Mesquita de Carvalho
Reginaldo da Silva Domingos
Susana Souza Brito
Yally Schayany Tavares Teixeira
Jennyfer Alves de Carvalho (estagiária)
Katarinne Fabrizzi Maciel do Couto (estagiária)

Editoração

Anderson Silva Reis Augusto Lopes dos Santos Borges Cristiano Ferreira de Araújo Daniel Alves Tavares Danielle de Oliveira Ayres Leonardo Hideki Higa

Capa

Aline Cristine Torres da Silva Martins

Projeto Gráfico

Aline Cristine Torres da Silva Martins

The manuscripts in languages other than Portuguese published herein have not been proofread.

Ipea - Brasília

Setor de Edifícios Públicos Sul 702/902, Bloco C Centro Empresarial Brasília 50, Torre B CEP: 70390-025, Asa Sul, Brasília-DF

Missão do Ipea

Aprimorar as políticas públicas essenciais ao desenvolvimento brasileiro por meio da produção e disseminação de conhecimentos e da assessoria ao Estado nas suas decisões estratégicas.

